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Abstract

Program synthesis aims to automate the construction of programs that
satisfy user-defined specifications, yet existing approaches face trade-offs
between correctness, scalability, and efficiency. One established approach
is syntax-guided synthesis (SyGuS), in which the user provides both a formal
specification of the desired program behaviour and a syntactic template,
typically expressed as a context-free grammar. However, it becomes com-
putationally expensive as the grammar grows and the number of possible
programs increases. In contrast, machine learning methods, including
large language models (LLMs), can generate code quickly by learning pat-
terns from large datasets, but they often produce incorrect or unverifiable
programs.

This thesis presents two complementary lines of research for integrat-
ing large language models (LLMs) into program synthesis. The first de-
velops prompt engineering techniques to automatically select the most
effective prompt-LLM configuration for a given synthesis task. The second
investigates hybrid synthesis methods that combine the correctness guar-
antees of classical SyGuS techniques with the speed and generalisation
capabilities of LLMs. This thesis further demonstrates the applicability of
hybrid synthesis methods to domain-specific program lifting, where trans-
lating low-level code into high-level representations is essential for ma-
chine learning workloads. Together, these contributions advance the de-
velopment of program synthesis frameworks that are both principled and

practical.






Lay Summary

Software engineers increasingly rely on large language models (LLMs)
to draft code quickly, yet these systems still hallucinate bugs and offer
no formal guarantees. Conversely, classical program synthesis tools ex-
plore programs with formal guarantees but become increasingly slow as
the search space expands. This thesis presents two complementary lines
of work that enhance the reliability and efficiency of program synthesis
using LLMs.

First, we address the problem of choosing the most effective solver for
a given synthesis task. Different LLMs and prompt styles vary widely in
their performance, and symbolic solvers are still often better for some
tasks. We develop CYANEA, an online prompt selection framework that
uses a contextual multi-armed bandit to predict the best LLM-prompt pair
or symbolic solver based on features of the input query.

Second, we focus on scenarios where LLMs generate incorrect solu-
tions. Instead of discarding these failed attempts, we extract probabilistic
grammars from them, capturing patterns in their structure. These gram-
mars are then used to guide enumerative search, effectively turning LLM
outputs into heuristics. This hybrid method, by combining statistical guid-
ance from LLMs with formal symbolic search, boosts synthesis success by
up to 80.1% compared to using the LLM alone, and outperforms state-of-
the-art solvers on SyGuS benchmarks.

We also apply this hybrid synthesis framework to domain-specific pro-
gram lifting, where low-level tensor kernels are translated into high-level
representations in TACO, a tensor algebra DSL. Our system, STAGG, integ-
rates LLM sketching with guided search and achieves 99% verified cor-
rectness on real-world benchmarks, outperforming existing tools in both

speed and coverage.



Together, these contributions show how large language models can be
used more effectively, either through careful prompt selection or as heur-

istic generators, to enable scalable and correct program synthesis.
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Chapter 1

Introduction

Program synthesis aims to automatically generate correct programs from
high-level specifications, such as logical constraints, input-output examples,
or natural language descriptions. Classical approaches to synthesis, par-
ticularly syntax-guided synthesis (SyGuS) and counterexample-guided in-
ductive synthesis (CEGIS), provide rigorous correctness guarantees by ex-
haustively exploring and verifying the program space. However, these
methods often suffer from a combinatorial explosion as the search space
grows, making them difficult to scale to complex domains and large gram-

mars.

In contrast, large language models (LLMs) have demonstrated remark-
able proficiency in generating code snippets quickly and flexibly. Their
outputs are often impressively fluent and creative, capturing a broad spec-
trum of programming patterns. However, LLM-generated code frequently
lacks the formal correctness guarantees required for many synthesis tasks.
Hallucinated logic or subtle semantic errors can undermine the reliability

of these outputs, limiting their applicability in high-assurance settings.

This thesis proposes two complementary research topics. First, we study

how to choose among many possible LLM—prompt combinations (or a tra-

1



2 Chapter 1. Introduction

ditional enumerator) for a given query, balancing accuracy, latency, and
cost. Second, we study how to exploit even incorrect LLM solutions by con-

verting them into guidance that accelerates enumerative search.

Chapter 3 introduces CYANEA, a framework designed to address a key
practical challenge in program synthesis: how to dynamically select the
most effective configuration for each new query. Today's synthesis work-
flows offer many options, symbolic solvers with formal guarantees, mul-
tiple large language models (LLMs), and a growing variety of prompt en-
gineering techniques, but performance varies wildly across tasks. Even
among LLMs, the effectiveness of a prompt can depend heavily on subtle
features of the synthesis problem, such as logical complexity, grammar
Size, or constraint type. As a result, no single LLM-prompt pair consist-
ently performs best across queries. Selecting the wrong pair not only re-
duces accuracy but also wastes time and money, especially when using
commercial APIs that charge per token. We consider three kinds of exist-
ing prompting techniques: manual, continuous, and discrete. All three tech-
niques attempt to improve the performance of LLMs without modifying
the LLM itself. CYANEA learns to make these choices automatically. It ob-
serves features of each incoming synthesis query, such as the keywords,
length, and logic type, and predicts which solver or LLM-prompt pair is
most likely to succeed. Over time, it improves its decisions by learning
from past outcomes. This learning process balances exploration (trying
less-tested options) with exploitation (choosing proven ones), a strategy
known in machine learning as a contextual multi-armed bandit. CYANEA
also allocates time and token budgets across solvers in a cost-aware way,
rather than using them uniformly. Together, this adaptive selection and
resource allocation lead to a 37.2% increase in success rate compared to

the best static solver, approaching oracle-level performance under fixed



computational budgets.

Chapter 4 focuses on mining the solution with LLM heuristics for Sy-
GuS benchmarks. While LLMs are increasingly effective at generating code,
direct prompting alone remains unreliable for such tasks. In initial experi-
ments, one-shot prompting, where the model is asked to generate a com-
plete program given the specification, solves only about half of the bench-
marks. These failures often stem from subtle logical errors. However, even
when the answers generated by LLMs are wrong, they tend to contain use-
ful fragments, which we call probabilistic context-free grammars (pCFG),
which we will introduce in Chapter 2. To capitalise on this partial know-
ledge, we first introduce pCFG-synth, which distils LLM-generated candid-
ates into a probabilistic context-free grammar. This grammar encodes the
LLM's biases as rule probabilities, allowing symbolic enumerators to prior-
itise candidates that are more likely to resemble a correct solution. To go
further, we present iLLM-synth, which tightly integrates the LLM into the
enumerative search loop. As the search proceeds and uncovers counter-
examples or promising partial programs, these are incorporated into new
prompts that elicit “helper” fragments from the LLMs. These helpers are
then added back into the probabilistic grammar, continuously refining the
heuristic as the search evolves. This creates a dynamic feedback loop in
which symbolic reasoning and neural guidance iteratively reinforce each

other.

Finally, Chapter 5 validates the hybrid synthesis approachin a real-world
setting, lifting dense tensor kernels from C into the TACO DSL. This prob-
lem is representative of a growing class of code migration and optimisation
tasks where legacy code must be ported to specialised DSLs to exploit mod-
ern compiler infrastructures and hardware accelerators. Manual trans-

lation is tedious, error-prone, and requires domain expertise, while fully
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automated lifting is difficult due to the semantic gap between low-level
imperative code and high-level tensor algebra constructs. To address this,
we present STAGG, a synthesis framework that applies our hybrid method-
ology end-to-end. STAGG begins by querying an LLM for multiple solutions
of the target program in the TACO DSL. These solutions, even when incor-
rect, reveal heuristics that are distilled into a probabilistic grammar. The
symbolic search engine then explores candidates guided by this learned
grammar. To ensure correctness, each candidate is subjected to an I/0
checking phase and a bounded model checking phase that verifies func-
tional equivalence with the original C kernel. This real-world application
highlights the practical value of combining LLMs with program synthesis,
where the LLM contributes rich, domain-specific heuristics without requir-
ing manual engineering, and the synthesis technique ensures precision
and correctness. On benchmarks drawn from existing literature, STAGG
achieves 99% correctness, while delivering order-of-magnitude runtime
improvements over previous lifting tools.

The remainder of this dissertation is structured to follow the progres-
sion from foundational concepts to applied systems. It begins with essen-
tial background (Chapter 2) and a review of related work (Chapter 6) to
frame the contributions in context. The core chapters develop increasingly
integrated hybrid synthesis techniques, first addressing selection among
solvers, then combining LLMs with program synthesis, and finally applying
these ideas to a real-world code lifting task. Each chapter is accompanied
by an empirical evaluation that highlights its practical benefits. The dis-
sertation concludes in Chapter 7 with reflections on limitations, broader

implications, and future directions for research in LLM-guided synthesis.



Chapter 2

Background

The foundational background for the techniques and systems developed
in this thesis is provided in this chapter, including the formal problem
definition, the role of grammars in constraining the search space, and the

syntax-guided synthesis (SyGuS) framework.

2.1 Program Synthesis

Program synthesis focuses on automated program creation that satisfies
a high-level specification, which can be comprehensive, such as a basic, un-
refined program, or incomplete, like a logical formula or a set of test cases.
It has applications in planning [23], program analysis [27], data wrangling

[31], and more.

2.2 Grammar

Context-Free Grammar. A context-free grammar is a 4-tuple

G=(V,ZRYS).

5



6 Chapter 2. Background

V is a finite set of variables, also known as non-terminal symbols. Z with
TNV = @is called the set of terminal symbols or alphabet. R C Vx(VUZ)" is
a finite relation describing the production rules of the grammar. We define
Ry = RNV x X', i.e. the set of rules restricted to those whose right-hand
side only consists of terminal symbols. Elements of (V U Z)" are known as
words in sentential form. S € V is the start symbol of the grammar G.
Given a context-free grammar G = (V,%,R,S) with x,y € (VU )" and
(a, B) € R we say that xay yields xBy, written xay — xBy. We say that x
derives y written x —° y if either x = yor x - x;, —» ..x, —» y forn > 0.

Finally, we define the language of a grammar
P(G)={sex"|S—>" s}

We now introduce two extensions of context-free grammars:
Weighted Context-Free Grammar, WCFG. A weighted context-free

grammar(wCFQG) [65, 73] is a 5-tuple
WG = (VI ZI RI ‘SI W)

suchthat(V, Z, R, S) is a context-free grammar and W is a function assigning
a numeric value to each rule r e R.
Probabilistic Context-Free Grammar, pCFG. A probabilistic context-

free grammar [65, 73] is a 5-tuple
PG = (VIZIRISI IP)

such that (V, Z, R, S) is a context-free grammar and P is a probability mass
function assigning a probability P[r] to each rule r € R. P; is the probability
mass function that assigns a probability to Ps[r] to each rule r € R;. A
pCFG is a specific instance of a wCFG, where the weights are normalised to
represent probabilities, satisfying the fundamental principle of probability

theory that the sum of probabilities for all possible rules must equal one.
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2.3 Satisfiability Modulo Theories

Boolean satisfiability (SAT) is the decision problem of determining whether
a given Boolean formula can be made true by some assignment of truth
values to its variables. Satisfiability Modulo Theories (SMT) extends SAT
solving to richer logical contexts. Instead of only Boolean variables, SMT
deals with formulas that include predicates over structured domains like
numbers, bit-vectors, or data structures. It asks whether a first-order for-
mula is satisfiable with respect to some background theory, generalising
the SAT problem to constraints modulo theories such as arithmetic, ar-
rays, or equality with uninterpreted functions. A theory T is essentially a
set of assumptions or axioms that constrain the behaviour of certain func-
tions and predicates, usually corresponding to a well-defined domain like

integers, reals, or bit-vectors.

2.4 Syntax-Guided Synthesis

In general, program synthesis is concerned with the generation (i.e., syn-
thesis) of a program that satisfies a certain specification. Syntax-guided
synthesis (SyGuS) describes a standardised function synthesis format that
precisely defines a synthesis problem within first-order theories [14]. We
will use the notation ¢[F — f]to denote the replacement of all occurrences
of F in ¢ with the concrete implementation f, while substituting all argu-
ments to f by the arguments of F in the same order.

A SyGuS problem is a 4-tuple (T, G, ¢, F) such that T is a first-order the-
ory, G is a context-free grammar, ¢ is a first-order formula, and F is a func-
tion symbol that may occur in ¢. A solution to a SyGusS problem (T, G, ¢, F)
is either a function f such that T £ ¢[F — f] and f € %(G), or proof that no
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such function can exist.

SyGuS closely follows the syntax and semantics of SMT, and hence T
usually refers to theories that are also common in SMT. Usually, SMT solv-
ers are queried in the background of SyGusS solvers to verify solution can-
didates. This connection is made explicit in Counter-Example Guided Induct-
ive Synthesis (CEGIS) [101]. CEGIS is a family of algorithms that alternate
between a synthesis phase, which searches for a candidate solution that
works for a subset of inputs, and a verification phase, where the candid-
ate is checked against all possible inputs. If the verification fails, a counter-
example is passed back to the synthesis phase and appended to the subset
of inputs used to guide the search. The synthesis phase is often implemen-

ted as an enumerative search [5, 95, 3].



Chapter 3

Online Prompt Selection for

Program Synthesis

The material in this chapter comes from paper Online Prompt Selection for
Program Synthesis [60], published at AAAI 2025. 1 designed and implemen-
ted the algorithms, frameworks presented in this chapter, and also carried

out the experimental evaluation.

3.1 Introduction

Large Language Models (LLMs) are beginning to dominate the discourse
around program synthesis and code generation. So much so, that one
might suppose they are the de facto answer to all code-generation ques-
tions. However, this is not the case. There are many synthesis problems
in which LLMs still fall far short of the basic enumerative techniques and
symbolic solvers [63, 13]. In addition, even when an LLM is the best choice,
they still hold a significant barrier to entry for the inexperienced user: first,
not all LLMs perform uniformly well across all problem sets, and it is of-

ten unclear which LLM a user should choose; second, the performance

9



10 Chapter 3. Online Prompt Selection for Program Synthesis

of LLMs is often dependent on careful prompt engineering by expert re-
searchers, with the literature reporting performance gains from many dif-
ferent prompting styles. Finally, compounding the challenge of these choices,
calling LLMs is often expensive (in terms of computational cost, or the fin-
ancial cost of using commercial APIs), and so making the wrong choice for
a large set of synthesis tasks is highly undesirable. This chapter addresses
these gaps through an online learning method that, given a synthesis task,
will predict whether a symbolic solver or LLM, from a portfolio of LLMs, is

most likely to solve the problem, with a corresponding prompting style.

We collate a portfolio of prompting styles and language models, which
we combine into LLM-prompt pairs that we refer to as “solvers”. We for-
mulate the task of ranking the solvers in order of most likely to solve the
problem as a multi-armed bandit problem [8]. The multi-armed bandit
sequentially selects between choices (in our case, solvers) with unknown
rewards (in our case, rewards are given for solving problems correctly and
fast or with low computational cost). It trades off exploration, i.e., trying
new solvers, with exploitation, i.e., using solvers that are known to be good.
We also present a second variation of this formulation, with multiple lay-
ers of bandits. The top multi-armed bandit selects between the symbolic
solver and the LLMs, and then the bandits in the lower layer predict the

best prompt style for the chosen LLM.

We implement an instance of our approach, CYANEA, and evaluate it
on synthesis tasks from the syntax-quided synthesis competition [4], from
the literature on ranking function synthesis [33, 34], and generated from
the SMT competition [85]. CYANEA solves 37.2% more synthesis queries
than the best single LLM or solver, and gets within 4% of the virtual best

solver.
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3.2 Overview

3.2.1 Problem Statement

We hypothesise that program synthesis users will frequently have not just
one but a series of synthesis problems to solve. For instance, when syn-
thesising invariants, one may be synthesising invariants for multiple differ-
ent loops within the same code base or system under verification. Users
may also have different needs when it comes to performance (e.g., fastest,
solves most queries, cheapest).

An example program synthesis problem, written in SyGuS-IF [83], is
shown in Benchmark 1. Given a candidate solution, we can validate whether
this solution is correct or not using a Satisfiability Modulo Theories (SMT)

solver, by checking if the formula

Ax.-~¢(f)

is satisfiable (in which case the candidate f is incorrect) or not.

1 (set-logic LIA)
2

3 (synth-fun fn@ ((vr@ Int) (vrl Int) (vr2 Int)) Int

4 ((Start Int) (StartBool Bool) (Const Int)) (
5 (Start Int

6 (Start

7 Const

8 (- Start)

9 (+ Start Start)

10 (- Start Start)

11 (*» Start Const)

12 ( Start Const)

13 ( Start Const)
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( Start)
( StartBool Start Start)
vr@d vrl vr2))
(StartBool Bool
(StartBool
(> Start Start)
(= Start Start)
(>= Start Start)
( StartBool StartBool)
( StartBool StartBool)
( StartBool)
))
(Const Int (@ 1))))
(declare-var vr@ Int)
(declare-var vrl Int)

(declare-var vr2 Int)

( (>= (fn@ vro vrl vr2) vr0))
( (>= (fn@ vr0 vrl vr2) vrl))
( (>= (fn@ vr0 vrl vr2) vr2))
( ( (= vr0 (fn@® vr@ vrl vr2)) ( (= vrl (

fnd vro vrl vr2)) (= vr2 (fn@ vro vrl vr2)))))

(check-synth)

Benchmark 1. A SyGuS specification that asks for a program that

synthesizes the maximum of 3 inputs.

Given a list of synthesis queries Q = {qg, ... 9}, and a set of solvers S =

{54, ...Sp}, where each solver is either a symbolic solver, or an LLM paired

with a prompting style (and LLM-prompt pair), we wish to use the solvers

to generate a list of synthesis functions f,, ... f,, such that each f; is a valid
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solution to g;, using as few computational resources as possible. We define
computational resources to be both the time spent solving a query, and an
estimate of the financial cost of running it (which is based on tokens used

for the LLMs, or runtime for the symbolic solver).

3.2.2 Approach

We capture the computational resources we care about as reward func-
tions. Our approach takes in Q,S, and a time budget, and cost budget
per query, T, and C, respectively. For each synthesis query, our approach
predicts an order of solvers that are most likely to solve the synthesis prob-
lem, and the time and cost that each is likely to take. We then distribute
the total time and cost budget across the solvers accordingly, and deploy

the solvers in sequence until the problem is solved.

Time

Time
Allocator

Featurizer Distribution
| , O g o) 5 > Predictor § ¢ Reward X0
SyGuS > > < “.ﬁ"o
K} Distribution LLM/Symbolic Solver

Allocator | Cost

SMT-LIB
Program

Figure 3.1: Single-layer Multi-Armed Bandit prediction
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Figure 3.2: Multi-layer Multi-Armed Bandit prediction

After a problem is solved, data is passed back to update the predictors,
in the form of any rewards obtained by the solvers called, and the solving

time and cost.

We break down the task of predicting LLM-prompt pairs in two different
ways. In the first, we implement a single multi-armed bandit that predicts
between all LLM-prompt pairs at once, shown in Figure 3.1. In the second,
we implement a multi-stage prediction, where we first predict which solver
is most likely to succeed, and then predict which prompt strategy is most
likely to succeed if an LLM is chosen, shown in Figure 3.2. The components

are outlined as follows:

Featurize:

The featurize block takes in a synthesis query g in SyGuS-IF and generates
a vector of features f representing that problem. We use a set of custom-

designed features, which are outlined in Section 3.4.
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Multi-armed bandit solver and prompt predictor:

The multi-armed bandit component of our workflow takes in a feature vec-
tor that represents the synthesis problem, and predicts the order in which
its library of solvers will perform, according to a cost function. In our im-
plementation, the library of solvers consists of two LLMs, with 6 prompting
styles, and an enumerative solver, detailed in Section 3.3.

We frame the problem as a contextual multi-armed bandit problem,
where the actions that the agent is choosing are the solvers. We imple-
ment two variations of this: the first, shown in Figure 3.1, uses a single
multi-armed bandit agent to rank a set of LLM/prompt combinations and a
symbolic solver. The second, layered approach, uses several layered multi-
armed bandit agents; one to choose between the base LLMs or symbolic
solvers, and a further agent for each LLM, which predicts which prompt to
deploy.

We give details of the contextual multi-armed bandit algorithms in Sec-
tion 3.4. After a solver is deployed, the reward obtained by that solver is
passed back to the solver performance predictor, which stores a list of re-

wards obtained so far by each solver.

Time and token budgeting:

The final two phases of our pipeline allocate a certain amount of tokens to

each LLM, followed by a number of time. Both are described in Section 3.4.

Deploy solvers:

Finally, given a ranked list of solvers, and a time and token budget for each,
the deploy phase sequentially calls each solver on the synthesis problem

until it either returns an answer or exceeds the time or token budget. If a
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solver returns the answer, we check if the answer satisfies the specification
using an SMT-solver. We also return all information about which solvers
successfully solved or did not solve the problem, the reward they obtained,

and how long they took to the prediction phases of the pipeline.

3.3 Prompting Styles and Solvers

In this section, we give an overview of the library of solvers S that our ap-

proach is equipped with. First, we discuss the prompting styles:

3.3.1 Prompting Styles

We develop a library of prompt templates based on the prompting styles
reported to be successful in the literature. We detail the styles here, and
illustrate them on our running example. Once we have chosen a style, we
give the LLM up to 16 attempts to produce a correct synthesis result. If an
answer produced is incorrect, we report the error information obtained

from the SMT-solver used to check correctness back to the LLM:

Natural language prompts:

LLMs are primarily trained on natural language inputs, and so we imple-
ment a simple syntactic transformation procedure that translates a set of

logical constraints into natural language.

Few-shot prompting:

Few-shot prompting is prompting whereby the LLM is provided with a num-

ber of examples of the task, with satisfying solutions, before asking it to
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solve a new, similar task. We use 3 examples, taken from the previously

solved synthesis problems.

Higher resource programming language prompts:

Our synthesis queries are in SyGuS-IF, a relatively uncommon language in
the training data for LLMs. Thus, we use a prompting style that asks for
the solutions in a higher-resource language and then asks for the transla-
tion into SyGuS-IF. We choose Lisp as the higher resource language rather
than a more common language like Python because we find that transla-
tion from Python to SyGuS-IF is more error-prone than translation from
Lisp, which is a fully parenthesised prefix notation similar to SyGuS-IF. This
is @ multi-stage prompting approach, and the prompts are shown below.
When asking for the translation into Lisp, we also provide 3 examples of

previous translations:

Solve the following function °~ function" with Lisp.

Only return one function, do not use recursion or

iterations. Do not return any text that isn't code.

Minimise token use. It's important you keep the

variables and function names the same as the original

function. The following is the problem that you are

meant to solve:

You need to synthesise: (synth-fun function ((x Int) (y
Int) (z Int)) Int). The function is called " “solution
" and takes arguments x, y, and z. These arguments
are Int, Int, and Int.

Write only one Lisp-like method " “defun function" that
never violates the SMT-LIB constraints.

No built-in functions in code.

Universally quantified variables: x, y, and z. The types
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of universally quantified variables are Int, Int,
and Int.
The function must follow the constraints:

[constraints]

Prompt 1: Prompt for Benchmark 1 to generate Lisp response.

Please convert the Lisp function you generated into SMT-
LIB format. Follow these guidelines:

Start the function with " (define-fun".

Provide only the function definition, starting with "(
define-fun".

Ensure the SMT-LIB function contains exactly one
function definition.

Avoid using iterations, bitvec, or int notations inside
the body.

Check the function description in the first message to
ensure variable and function names are consistent.

Use the assigned values from the Lisp code during
translation.

Do not introduce any new variables that do not exist in
the Lisp function.

Pay attention to types. If there are bit-vector terms,
ensure they are of the same width.

Rules for SMT-LIB: +, -, *, ite, >, =, <, >=, <=, and,

or, not, true, false.

Prompt 2: Prompt for Benchmark 1 to convert Lisp to SMT-LIB.
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Prompting with roles:

Prefixing a prompt with an appropriate role description for the LLM can
improve the performance of the LLM [115]. We append the sentence “You
are a good program synthesiser” to the beginning of each prompt,

if using “prompting with roles”.

Emotional stimuli:

It has been shownin the literature that adding emotional stimuli to prompts
can improve the performance of LLMs [58]. We append the following emo-

tional stimuli to the prompt.

You are excited to help, and you are ready to provide
the best answer possible. You understand that if you
fail to provide the best answer, your client will be

extremely upset. Please don't fail me.

Prompt 3: Prompt for Benchmark 1 to add emotional stimuli.

Matrix of prompts:

In order to reduce the search space of prompts, we choose a fixed combin-

ation of prompting styles, shown in Table 3.1.
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Table 3.1: Prompt styles

3.3.2 Enumerative Solver

The final solver in the library is an enumerative solver, based on Counter-
Example Guided Inductive Synthesis (CEGIS) [101], with an A* based search
phase. Details about A* search will be discussed in Chapter 4. CEGIS al-
ternates between a synthesis phase, which searches for a candidate solu-
tion that works for a subset of inputs, and a verification phase, where the
candidate is checked against all possible inputs. If the verification fails, a
counterexample is passed back to the synthesis phase and appended to
the subset of inputs used to guide the search. In our case, the synthesis
phase isimplemented as an A* search, similar to that used by Euphony [57].
A*isagraphsearch algorithm that uses two functions to guide its search:
f: the sum of the costs on the edges used to reach the current state, and g:
the estimated sum of the costs on the edges that will be used to reach a tar-

get state from the current state. In our setting, each state is an expression
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(a partial or complete program) that can be generated from the grammar
for the full logic, the initial state is start symbol of the grammar, the target
states are any complete program, and each edge between states s; and s,
corresponds to a production rule that can transform the partial program
at s; into the partial/complete program at s;. The cost on any edge is pro-
portional to the number of possible choices (so the more edges there are

leaving from one state, the higher the cost of each edge).

To give some intuition, a partial program that contains few non-terminals
and where each non-terminal symbol can only be replaced by production
rules that lead immediately to a complete program has a low estimated
cost to reach the target. We refer the reader to the detailed descriptions in
the related work [57, 63] for the full details. We chose this implementation
of CEGIS as the enumerative solver to use because, in our experiments, it
excels at finding short solutions that the LLMs often struggle with, without
running into the memory issues that often plague bottom-up search meth-

ods in synthesis.

3.4 Online Solver Selection

The aim of the multi-armed bandit is to predict a ranking of which LLM
and prompt combinations are most likely to solve the synthesis problem,
and obtain the maximum reward while doing so. In our setting, the agent
must trade off the exploration of using LLMs and prompts that it has not
tried before, vs deploying LLM and prompt combinations that are known
to have given high rewards in the past. In fact, we use an extension of the
standard MAB problem, and ask the agent to predict a sequence of solvers

to deploy rather than a single solver.
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3.4.1 k-Nearest Neighbor

We choose k-Nearest Neighbour as our contextual multi-armed bandit. Other
contextual multi-armed bandits are available, but many of the common
ones, for instance LinUCB, make assumptions that the performance of
solvers is correlated linearly with the feature vector, which is unlikely to
be the case in our application.

k-NN is a simple supervised learning classifier. In our context, given a
synthesis query g, it identifies the nearest k previously solved queries to g
by calculating the Cartesian distance between the feature vectors. Each of
the k queries q,, ... g, is labelled with the solver that it was solved by and
the reward that was obtained, r,, ... r, respectively. The score for a solver
s; is given by the sum of the rewards for all queries solved by s;. We rank
the solvers based on this score (the highest score is best). For any solvers
that do not appear in this ranking, we randomly shuffle them and append
them to the end of the list of solvers. If an LLM-prompt pair solves a query,
we add a query with that feature vector to our database of queries with
the corresponding reward.

For the double-layered multi-armed bandit, the first layer contains one
k-NN multi-armed bandit which selects only between the LLMs, and the
second layer contains a k-NN multi-armed bandit for each LLM, which se-
lects between prompts. The second layer k-NN predictors are independ-

ent.

Reward functions:

Our approach is customizable to different reward functions We use three
reward functions: the first simply aims to solve the queries as fast as pos-

sible, regardless of computational cost; and the second takes computa-
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tional cost into account. The first reward function is given as follows:

) 0 if query g is unsolved,
r- =

(1- ;)4 if query g is solved
where t is the time taken to solve query g, and T is the total time budget
for solving query q.
The second reward function aims to prioritise cheaper solving, and so

accounts for the number of tokens in the prompt and response.

0 if query g is unsolved,
re =
c\4

(1-2

where c is a cost estimate proportional to the number of tokens used in

if query q is solved

solving query g and C is the total cost budget for solving query q. The cost

estimate is defined as
¢ = input tokens + 3 x output tokens

for LLMs, which accounts for the higher cost of output tokens from com-
mercial language model APIs. The actual cost of deploying an enumerative
solver is proportional to the runtime and would be negligible for all quer-
ies in comparison to the cost of calling a commercial language model, so
we fix the cost for the enumerative solver to be a small constant (0.4) for
all queries.

The final reward is a simple binary reward, r®, which evaluates to 1 if a

query is solved and 0 if it is not solved.

Features:

A key component of the contextual multi-armed bandit is the featurization.
We propose a feature extraction method to analyse SyGuS queries, captur-
ing key syntactic attributes and query types. The extracted features we use

are:
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Keywords: Frequencies of specific SMT-LIB keywords (e.g., +, —, %, div, etc).
Query length: The total number of tokens in the file.

Constants: Number of constants of each type.

Query logic: e.g.,, BV, LIA, PBE, INV, etc.

3.4.2 Time and Token Budget Allocation

Thefinal stage of the dynamic solver selection predicts the time that should
be allocated to solver, and the cost. The goal is to allocate a sufficient pro-
portion of our time and cost budget to each solver in the series that we are
reasonably confident that it was unlikely to solve the query past this point.
That is, for a solver s;, we wish to find a minimum time allocation t; and
cost allocation ¢; such that P(t; < u; < T) < 6, and P(c; < v; < C) < 6,, where u;
is the true runtime, v; is the true cost, and §, and 6, are some small error
thresholds. §, is the probability that we failed to solve a query because we
allocated too little time to solving it, and 6, is the probability that we failed
to solve a query because we allocated too few tokens to it.

Let us consider the cost allocation first: we model each prompt-pair’s
cost per query as an exponential distribution (that is, most queries are
solved with a small number of tokens, only a few queries are solved with
an excessively large number of tokens). We use maximum likelihood estim-
ation (MLE) [75] to estimate the parameters of the underlying exponential
distribution, given the costs we have observed so far. Suppose we observe
u, ... u, costs, which we assume are drawn from an exponential distribution
Exponential(A). To find the exponential distribution which fits our observa-

tions best, we aim to solve

mAin ninA - A(Z;u;),
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where Z;u; is the sum of all costs observed so far. This gives us the minim-

iser
n
A= .
2. U
We can apply the cumulative distribution function and calculate ¢; as:
—In(§ + e*°€)
C,- = T

To make this contextual, we use only the costs from the k nearest samples,
according to the feature vectors. We divide the total token budget C greed-
ily between the solvers, calculate c; for each solver starting from the be-
ginning of our ranking, and, once we have reached the total budget C, all
following solvers are allocated zero tokens. If we reach the end of the list
and have remaining tokens, they are given to the final solver.

We repeat all of the above for a time. It is worth noting that the time
budget is not independent from the cost budget, because if a solver is al-
located zero tokens by the cost budget allocator, the time budget allocator

will also not allocate it any time.

3.5 Evaluation

We implement aninstance of our approach, called CYANEA, using two LLMs:
GPT(gpt-3.5-turbo-0125) and Llama(Meta-LIlama-3-70B) and the enumerat-
ive solver described previously. We set a total timeout of T = 100 seconds
and a total cost budget of C = 100, 000. For all k-NN predictors, we set k =
15. We conducted a parameter sweep of k and found that values between
10 and 15 produce comparable results. We use CVC5 [12] as the SMT solver
for validating the correctness of candidate solutions. We compare our ap-
proach to the base solvers and to a “virtual best” solver result, which is

calculated by choosing the solver known to give the highest reward for
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each query. To evaluate the utility of the time and budget allocations, we
compare to a linear distribution of the time and cost budget (where we
simply divide the total budget equally between all solvers), termed “linear”

in the results.

3.5.1 Synthesis Queries and Scoring.

We evaluate our approach on synthesis queries from the Syntax-Guided
Synthesis competition [4], ranking function synthesis [33], and automat-
ically generated from the SMT competition [85]. The synthesis queries
cover a broad range of use-cases of synthesis, from code generation and
programming-by-example, to ranking function and invariant synthesis. The
total number of queries is 1269.

We report the total reward achieved, calculated using the reward func-
tions used for the prediction. We also report the score according to the
Par-2 score used by the SAT competition [107]. This is calculated over n
queries:

j=n It; if g; is solved,
=12+ T otherwise
where t; is the runtime for solving query q;, and T is the total time budget

per query.

3.5.2 Analysis of Results

The performance of the LLM-prompt pairs and enumerative solver is shown
in Table 3.2. The best-performing single solver solves 64.3% of the quer-
ies. On the other hand, the virtual best solver solves 91.8% of queries. The
best-performing instance of CYANEA solves 88.3% of the queries, achiev-

ing a score of 96.1% of the virtual best solver, and a Par-2 score < 40% of
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Solver % Solved | # Solved (r®) | Par-2 Score | r¢ rt avg time (s) | avg. cost

Virtual Best 91.8% 1165 23596 1106.2 | 1019.2 | 2.4 670.3

Single k-NN (r) 88.3% 1120.6£7.3 | 37636.3 1008.7 | 904.4 | 71 3122
Single k-NN (rf) 88.2% 1119.1£8.2 | 37813.7 1006 905.7 |7 3176.9
Single k-NN (r?) 88.1% 1117.5£8.3 | 38793 995.2 | 888 7.6 3446.5
Single k-NN linear (r*) | 87.0% 1104+0 39072 1000.9 | 935.2 | 5.5 3249.6
Single k-NN linear (r¢) | 87.0% 1104+0 39072 1002.1 | 935.2 | 5.5 32114
Single k-NN linear (r®) | 87.0% 11040 391824 9954 | 9304 |5.6 3394.9
Double k-NN (r¢) 84.5% 1071.7+24 53499.3 886.9 | 774.7 | 13.1 6366.8
Double k-NN (rf) 84.4% 1071.1+24.7 | 53504.3 884.6 | 776.1 13 6448.3
Double k-NN (r?) 84.3% 1069.8+24.5 | 53747.4 887.8 | 7752 |13 6262.7
Double k-NN linear (r¢) | 71.8% 910.7+159.2 | 80038.4 803.2 | 7324 |9.2 4589.1
Double k-NN linear (r*) | 71.8% 910.7+159.2 | 80129.5 8019 |731.8 |93 4656.1
Double k-NN linear (r*) | 71.8% 910.7+159.2 | 80220.6 798.2 | 7289 |94 4809.2
llama-p4 64.3% 816 95251.2 7523 | 6642 |57 2098.2
llama-p3 61.7% 783 106596 678.1 |529.1 |12 37941
llama-p5 59.7% 757 112543.8 644 490.6 | 134 4275.9
gpt-p4 54.3% 689 118273.7 637.1 | 6074 |33 2070.1

enumerator 52.2% 662 122591.6 6473 | 626.7 |18 0.4

gpt-p1 51.6% | 655 126533.5 | 591 531.6 |5.7 2678.1
gpt-p6 50.5% 641 129638.3 582.8 |513.4 | 6.3 2508.7

gpt-p5 441% | 560 145160 5104 | 4531 |6 2425
gpt-p3 44.0% 558 145101.6 502.3 |464.1 |5.2 2900.5
gpt-p2 39.2% 497 156238.9 428.4 | 431.7 | 3.7 3755.7
llama-p1 37.2% 472 162184.8 436.5 |380.5 |5.9 2008.6
llama-p2 35.0% 444 168108 3616 | 3415 |7 5119.5
llama-p6 34.8% 442 167963.6 407.3 |353.8 |58 2071.6

Table 3.2: Performance of all instances of CYANEA, and all individual solv-

ers. We report results from CYANEA over 20 runs, with the standard devi-

ation shown for the number of queries solved. The “Virtual Best” solver re-

ports the maximum scores we could achieve if we made the perfect choice

for each query, using the best reward function for that score (e.g., the score

for r¢ is reported, making choices using r°.
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the score of the best single solver (lower is better for Par-2 score), shown

in Figure 3.3.
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Figure 3.3: Cumulative Par-2 Score plotted against query number. Lower

is better.

Since the order the selectors see the queries will affect the learning, we
report the average scores of 20 runs, with the queries randomly shuffled
in each run. When comparing the single to multi-layer approaches, we
note that the multi-layer approach has a far greater standard deviation in
the number of queries solved. We hypothesise that this is because the
selectors in the lower layers see far less data than in the single-layer k-NN,
making them more sensitive to this ordering.

When evaluating the reward functions used by a single k-NN, unsur-
prisingly, the best Par-2 score (which is based on solving time) is achieved

using rf, the lowest cost per query is achieved using r¢, and the highest
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number of queries solved is achieved using r?. This is not true for double
k-NN, again we believe because the data is too sparse.

The results for CYANEA using the linear distribution of time and token
budgets demonstrate that the token budget allocator is having an impact
on both Par-2 score and average solving cost, although this effect is not as
large as it would be if the total time budget and cost budget were tighter,
as in many cases CYANEA can run all the solvers on a single query within
the given budget. Whilst the double k-NN with the linear distribution of
budgets does have lower average costs per query, we hypothesise that
this is because it fails to solve many of the queries that require a higher
cost to solve.

Overall, the predictions that the best-performing instance of CYANEA
is making are close to those of the virtual best solver and, when the pre-
diction is not perfect, the time/budget allocation allows CYANEA to correct

the mistake.

3.5.3 Conclusions

We have presented an approach for online solver and prompt selection for
program synthesis problems; CYANEA demonstrates the effectiveness of
this, achieving a Par-2 score that is more than twice as good as the best
single solver. It also demonstrated how prompt selection can make large
language models more reliable for program synthesis when multiple mod-
els and prompting strategies are available. We will turn to a complement-
ary question in next chapter: how can we embed LLMs more tightly into

the synthesis loop itself?






Chapter 4

Guiding Enumerative Program

Synthesis with LLMs

The material in this chapter comes from paper Guiding Enumerative Pro-
gram Synthesis with Large Language Models [63], published at CAV 2024. 1
designed the frameworks, in collaboration with Professor Elizabeth Pol-
green, implemented the algorithms and carried out the full experimental

evaluation.

4.1 Introduction

The dominant techniques for formal program synthesis are based around
enumeration [95, 6, 42], and a key challenge is how to guide this enu-
meration to search a huge space of possible programs efficiently. Syntax-
Guided Synthesis(SyGuS) [3] allows the user to restrict the space of pos-
sible programs using a context-free grammar, and, in later work, this has
been extended using pre-trained probabilistic models such as higher-order
grammars [57] and neural networks [74], trained on a dataset of solved

synthesis problems. However, obtaining these datasets for pre-training is

31
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challenging.

In parallel, the use of pre-trained large language models (LLMs) to gen-
erate code is rapidly gaining traction, with impressive results being ob-
tained on benchmarks with natural language specifications and input out-
put examples [24]. These benchmarks are very different in style to the
logical specifications that formal program synthesis tackles, as most are
procedural code, in Python, and solve classic programming exercise ques-
tions that might be asked of students or interview candidates, and that
one may find in abundance on sources used in training data, such as Stack-
Overflow and GitHub. In contrast, formal program synthesis benchmarks,
such as those in the SyGuS competition, require functional code, which
must satisfy precise logical specifications derived from problems such as
program analysis [27], and are certainly less abundant in sources of pub-

licly available code for training machine learning models.

In this chapter, we set out to investigate whether off-the-shelf large
language models can solve formal program synthesis problems. We craft
a library of prompts, which enables us to solve roughly 50% of the SyGuS
competition benchmarks. We hypothesise that, in the cases where the LLM
returns only incorrect solutions, the correct solutions are most often in the
vicinity of the incorrect solutions, and that, by searching in the neighbour-
hood of the incorrect solutions, we may be able to guide an enumerative
synthesiser to find a solution faster. To that end, we construct a probab-
ilistic Context-Free Grammar (pCFG) based on the incorrect solutions pro-
posed by the LLM, and use this to guide an enumerative synthesiser within

a Counter-Example Guided Inductive Synthesis (CEGIS) loop.

Our final contribution is a full integration of these techniques in a novel
CEGIS algorithm with an inline syntactic oracle, in the form of an LLM that

is queried by an enumerative synthesis phase. We incorporate informa-
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tion obtained during the synthesis search into the queries, prompting the
LLM with partially enumerated functions, incorrect solutions, and counter-
examples, and requesting that it provide “helper functions”, which we use

to update the pCFG guiding the enumerator.

We implement all three techniques described above and evaluate them
on benchmarks from the Syntax-Guided Synthesis competition. We com-
pare with two baselines: the first is an enumerative synthesiser where all
rulesinthe grammar are given equal likelihood, and the second is CVC5[12],
the state-of-the-art SyGuS solver. All techniques easily outperform the
baseline enumerator, and the final technique outperforms CVC5. Our res-
ults demonstrate that, whilst large language models do have the potential
to make significant contributions in the domain of formal program syn-
thesis, this can currently only be achieved by combining these techniques
with existing algorithms in the literature. Enumerative synthesis is not yet

obsolete!

The main contributions of our work are as follows: A set of prompts for
prompting a pre-trained Large Language Model to solve formal program
synthesis problems (Section 4.3.1); A method for guiding an enumerat-
ive synthesiser using LLM-generated probabilistic context-free grammars
(Section 4.4.1); A novel approach to integrating an LLM into an enumer-
ative synthesiser (Section 4.5); And, finally, an implementation and evalu-
ation of all of the above on benchmark problems taken from the Syntax-
Guided Synthesis competition. The results outperform CVC5, the state-of-

the-art synthesiser, as well as our baseline enumerators.
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4.2 Overview

In this chapter, we first present a carefully tailored set of prompts that we
use to evaluate an LLM's ability to solve formal synthesis problems. We
construct an iterative loop where we prompt the LLM, verify the candidate

solution, and if the solution fails, we prompt the LLM again.

We then present two methods for integrating syntactic guidance from
pre-trained LLMs into an enumerative CEGIS algorithm. The first method,
shown in Figure 4.1, prompts an LLM for solutions to the benchmark, and
generates a pCFG from these solutions before deploying an enumerative
synthesiser, increasing the chance of the LLM solving the synthesis prob-

lem outright. We refer to this method as pCFG-synth.

Failure

Candidate] \
Success SMT-LIB
_
Program

Failure

‘\Prin%veriﬁer \

Rule
Candldate We1ghts

Search

Figure 4.1: An overview of pCFG-synth. Both the verifier and the LLM have
access to the specification ¢ (which is used to generate the prompt for the

LLM, as well as to check whether candidate programs are correct).
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Candidatel \

Grammar /
Success SMT-LIB
% ) W__> Program |
SyGuS |—> _— Failure
/ Search X ‘_/ Verifier

Counterexample

Helper Partial Prog.

Functions Prev. Solutions
\ ./z':c:‘;o
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Figure 4.2: An overview of iLLM-synth. Both the verifier and the enumer-

ator have access to the specification ¢ (which is used to generate the
prompt for the LLM, as well as to check whether candidate programs are

correct).

The second method, shown in Figure 4.2, integrates the prompting
within the enumerative synthesiser, allowing the prompts to incorporate
additional information obtained during the synthesis process. Here, in-
stead of asking the LLM to provide a full solution, we ask it to provide
helper functions to help “a student” complete the partially enumerated
program. We use the responses to augment the set of production rules in
the grammar and update the weights across the existing production rules.
We refer to this approach, which integrates an LLM into an enumerative
synthesiser, as iLLM-synth. In this section, we give an overview of these
two approaches. The details of the components of both approaches and
their relative performances are found in the subsequent sections. We in-
tegrate both approaches with a probabilistic top-down enumerator and a

weighted search based on the A* algorithm [39, 57].
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4.3 Stand-alone LLM

In this section, we describe how we prompt the LLM as a stand-alone syn-
thesiser. These prompting techniques are then also deployed by pCFG-
synth. We use GPT-3.5-turbo as the LLM. Note that the model is not fine-
tuned to this problem setting. Furthermore, we rename any functions and
variables in the SyGuS benchmarks to generic names to avoid the LLM pro-

ducing solutions solely based on the function names.

4.3.1 Prompting the LLM

We design a library of prompts for program synthesis problems with logical
specifications and a single target function to synthesise. These prompts
are deployed in an iterative loop, until a correct solution is obtained, or
the library of prompts is exhausted.

Prompting is an art rather than a science, but we hypothesise that it is
better to ask the LLM to give a solution in a language that is more com-
mon in the training data, and then request it to translate it into our de-
sired SMT-LIB, and experiment with both Python and Lisp. On a subset
of 50 benchmarks, we observed that soliciting responses in Lisp resulted
in a 6% enhancement in the resolution of benchmarks compared to util-
ising Python (and both were better than asking for SMT-lib directly). It is
also reported in the literature that the efficacy of LLMs can be augmen-
ted by including emotional stimuli within prompts [58]. Incorporating the
emotional prompt leads to an 8% increase in the likelihood of generating
accurate solutions compared to standard, non-emotional prompts in our
study.

The following is an example prompt and response sequence for the LIA

example shown in Benchmark 1:
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(set-logic LIA)

(synth-fun function ((x Int) (y Int) (z Int)) Int)

(constraint (>= (function x y z) x))

(constraint (>= (function x vy z) y))

(constraint (>= (function x y z) z))

(constraint (or (= x (function x y z)) (or (= vy (
function x y z)) (= z (function x vy z)))))

(check-synth)

You are a good synthesiser. Do you know what "(define-
fun function ((x Int) (y Int) (z Int)) Int" is doing?

Write only one Lisp-like method "defun function" without

any built-in methods or arrays.

Requirements:

No built-in functions.

Never violate the SMT-LIB constraints above.

Pay attention to the define functions.

A W NP

. Ensure the response contains one and only one
function.
5. Do not include any iterations, BitVec, or Int
notations in the function body.
Write it correctly, or I will lose my job and 100
grandmothers will die. Don't disappoint me.
Write only one Lisp-like method "defun fn" that never

violates the SMT-LIB constraints above.

Prompt 4: Prompt for Benchmark 1.

(defun function (x y z)
(ite (>= x y) (ite (>= x z) x z) (ite (>=y vr2) y z
)))

Response 1: Response from LLM after Prompt 4.

37
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You are close to the right answer. Take another guess.
You have to try something different, think harder.
Write a different Lisp method that never violates the

SMT-LIB constraints above again.

Prompt 5: Prompt requesting a revised solution.

4.3.2 Prompts for invariant synthesis

Invariant synthesis is a specific instance of program synthesis: given a pre-
condition pre(x), transition-relation trans(x, x’) and post-condition post(x),
the synthesiser is required to provide an invariant inv that satisfies the

following constraint:
Vx, x".pre(x) = inv(x)A(inv(x)Atrans(x, x)) = inv(x’)Ainv(x) = post(x).

We find that LLMs struggle to reason about constraints presented in the
above format. Inspired by “chain-of-thought” [109] prompting, where the
LLM is asked to provide a step-by-step explanation, we augment our prompt-
ing strategy for invariants by asking the LLM first to explain the constraints.
After requesting this explanation, we follow the same interactive prompt
strategy as before.

(synth-inv inv-f ((x Int) (y Int)))

(define-fun pre-f ((x Int) (y Int)) Bool (and (= x 1) (=

y 1)))
(define-fun trans-f ((x Int) (y Int) (x! Int) (y! Int))
Bool (and (= x! (+ x y)) (= y! (+ xy))))
(define-fun post-f ((x Int) (y Int)) Bool (>=y 1))
(inv-constraint inv-f pre-f trans-f post-f)

Please explain the constraints above.

Prompt 6: Integrating LLM-generated explanations into the prompt
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4.3.3 Lisp to SMT-LIB Converter

The final prompts in our prompt library are to ask the LLM to convert any

functions given in Lisp to correct SMT-LIB functions:

You are a good programming language converter. Convert
the Lisp function to SMT-LIB:

Based on the Lisp code provided above, convert the '
defun' Lisp-like code to a corresponding SMT-LIB
function. Use SMT-LIB syntax starting with (define-
fun

Follow these guidelines:

1. Only give me the function definition starting with '(
define-fun'.

2. Pay attention to types. If there are bit-vector terms
, they need to be of the same width.

3. Ensure the SMT-LIB function contains one and only one

function definition starting with '(define-fun'.

4. Do not include any iterations, BitVec, or Int
notations in the function body.

5. Use the assigned values from the Lisp code during
translation.

6. Do not introduce any variables that do not exist in
the Lisp function.

Rules for SMT-LIB: +, -, *, ite, >, =, <, >=, <=, and,

or, not, true, false.

Prompt 7. Request for converting Lisp to SMT-LIB code for response 1.

Upon receiving a response from the LLM, we extracted the Lisp program
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and subjected it to format verification. The resulting SMT-LIB code is rep-

resented in Response 2:

(define-fun function ((x Int) (y Int) (z Int)) Int
(ite (>= x y) (ite (>= x z) x z) (ite (>=y vr2) y z

)))

Response 2: Response from LLM after Prompt 7.

Algorithm 1 CEGIS with weighted search
1. procedure CEGIS(WW;, ¢)

2: cex «— J

3: while true do

4: prog < ENUMERATE(W;, ¢, cex, )
5: if VERIFY(prog, ¢) then
6: return prog
7: else
8: C < VERIFY.GET_CEX
9: cex « cex U{c}
10: end if
11: end while

12: end procedure

4.4 Synthesis with pCFG Guidance: pCFG-synth

We hypothesise that, if the LLM did not propose a correct solution, the
correct solution is likely to be roughly in the same “area” as the incorrect
solutions it suggested, and so our synthesis algorithm aims to prioritise
this area when searching for candidate programs. For simplicity, we use

a simple weighted Context-Free Grammar to represent the area of solu-
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tions proposed by the LLM. We then present methods for searching the
space: the first is a probabilistic top-down search, shown in Algorithm 4;
the second is based on an adaptation of the A* algorithm [39, 57], and we
integrate both into CEGIS searches as shown in Algorithm 1. The verifica-
tion phase in Algorithm 1 is implemented via a call to an SMT solver, which
checks, for a candidate solution f, whether there exists an input such that

the specification is violated, i.e.,

HX.—l(p[F — f]

4.4.1 Inferring a Weighted CFG

In this section, we describe how we infer a weighted Context-Free Gram-

mar from the incorrect solutions produced by the large language model.

Definition 1 (Derivations). Given a context-free grammar G, and a sentence
s, the sentence is in the language of the grammar if S —" s, where S is the
start symbol of the grammar. The derivation of s from S is a sequence of rules
such that § = S N .Sy o s and ro..., € R. We denote the derivation of s
by the sequence of rules ry, ...r, as D, = {r,, ... r,}. The left-most derivation is a
derivation such that all rules expand the left-most non-terminal symbol in the

sentential form.

From here on in, all derivations are assumed to be the left-most deriv-
ation, and we assume the grammar is unambiguous, i.e., there exists a
single left-most derivation for any sentence in the language.

Given a set of possible programs prog € 4G generated by the language
model, we calculate a weight for each rule r; € R as the number of times
that rule appears in the left-most derivations of the programs. That is,

wirl= > 15l € Dprog,s (4.1)

prog;€prog
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where |r;| is the number of times r; appears in the derivation. For example,

consider Response 1: the weights are calculated as

wlr] =3,
wlr,] =3,
wlrs] =3,
wlr,] = 4,
wlrs] = 3.

These correspond to the rules from Benchmark 1:

r,:Start —» (ite StartBool Start Start)
ry:Start —» vro
ry:Start - vrl
ry:Start —» vr2

rs: StartBool — (>= Start Start).

Probabilistic context-free grammar:

Given a wCFG, we derive a simple pCFG by assuming that the probability
associated witharuler;: a —» Bis equal to the weight wla — B] of r;, divided
by

Inlall = lax(ZUV)" €RI,

i.e., the total number of rules that could be applied to a. That is

B wla — f]
Pla= Bl = =aq

By extension,
wla — f]

Ps[a— B] = Ial
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iff B € X and 0 otherwise.

4.4.2 Probabilistic Guided Search

The aim of our algorithm is thus to search the area of programs closest
to those with the highest weights in the wCFG, or highest probabilities in
the corresponding pCFG. We adapt and implement two search methods
for doing this: the first is a probabilistic top-down search. To this end, we

first introduce the notion of a grammar tree.

Definition 2 (Grammar tree). We represent the search space as a grammar
tree. Given a context-free grammar G = (V,Z,R,S), the graph of sentential
forms, or grammar tree, 7 (G) defined inductively: S is the root of the tree, and
forall x,y € (VUZ)" with x — y and x being a node of the tree, then y is a
child node of x.

To implement our probabilistic guided search, we extend this definition
to a probabilisticgrammar tree. Given a pCFG, P; = (V, %, R, S, P), a probabil-
isticgrammar tree 7 (P;) is a directed labelled graph as defined before, but
each edge has a corresponding weight w given by P. We limit the edges to
only those needed for the left-most derivations, and so & and w are defined

as follows:

é0={xaya;p>xﬁy|a—>,BER,er*,aeV,B,ye(VUZ)*},

wla — B] = Pla — B].

Note that this guarantees that, for any node, the sum of the weights on

the edges leaving that node is equal to 1.
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Algorithm 2 Probabilistic top-down enumerator for pCFG-synth
1: procedure ENUMERATE(WW;, ¢, cex )

2 prog <« W;.S

3 d<0

4 previousProgs <« &
5: P, < BUILDPCFG(W;)

6: while 1 do

7: if prog € Z* then
8: previousProgs < previousProgs U prog
o: if VX € cex. ¢(prog, X) then
10: return prog
11: else
12: prog < S
13: d<0
14 end if
15: end if
16: prog «— REPLACENONTERMINALS(prog, P;)
17: de—d+1
18: if d = maxDepth then
19: prog < COMPLETEPROGRAM(prog, Pg)
20: if prog € PreviousPrograms then
21: prog « S
22: d<0
23: end if
24: end if

25: end while

26: end procedure

We search this grammar tree using a top-down enumerative synthes-
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iser, shown in Algorithm 2. This enumerates possible programs in the
grammar in a top-down manner, expanding non-terminals by randomly
sampling from the categorical distribution over the production rules. That
is, the search algorithm starts by considering the node corresponding to
the start symbol S. It then chooses the next node by sampling from a cat-
egorical distribution with event probabilities corresponding to the probab-
ilities on the outgoing edges of the current node. The categorical distri-
bution is a generalisation of the Bernoulli distribution and describes the
possible results of a random variable that can take one of K possible cat-
egories, with the probability of each category separately specified. Form-
ally, to sample a rule a x S to apply to a non-terminal symbol a, we sample

from the distribution:

(ax B) ~ Cat(|mla]l, {PIr[al], Plrlal,], ...},

where |m[a]]| is the number of rules that could be applied to a and m[a]; is
the i*" of those rules, and {P[r[a],], P[r[al,], ...} is a vector of probabilities

corresponding to those rules.

We then apply the sampled rule, and repeat the process. We use prog.{a —
B} to indicate the result of substituting the first occurrence of a in a partial

program prog with S.
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Algorithm 3 Replace non-terminals and complete program for pCFG-

synth enumerator in Algorithm 2
1: procedure REPLACENONTERMINALS(prog, P¢)

2 NT « 1list of nonterminals in prog

3: fora e NT do

4: (a x B) ~ Cat(|m[a]l, {P[r[a]l,], P[r[al.], ...}) > Sample from
distribution
5: prog < prog.{a — B} > apply rule to prog

6: end for

7: return prog

0o

: end procedure

O

: procedure COMPLETEPROGRAM(prog, Pg) > Replaces non-terminal
symbols with terminal symbols

10: NT « 1ist of nonterminal symbols in prog

11:  forae NT do

12: (a x B) ~ Cat(|m[a]l, {Ps[r[al,], Ps[r[al,], ...}) > Sample

13: prog < prog.{nt — nt’} > apply rule to prog

14 end for

15: return prog

16: end procedure

With a naive implementation of this algorithm, the probability of our

algorithm generating any sentence s is equal to [] P[r;], where Dy is the

ri€Dg
left-most derivation of s. However, this will result in the algorithm generat-
ing the same programs multiple times, so we modify this algorithm in two
ways: First, if we enumerate a complete program that we have seen be-
fore, we discard it; Second, we give a maximum depth limit, and if we are
approaching the maximum depth limit, we sample only from the outgoing

edges that result in complete programs.
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Algorithm 4 pCFG-synth

1. procedure PCFG-SYNTH(prompts, ¢, G)

N

10:

11:

12:

13:

14:

15:

16:

17:

conv « [ ]
progs «— <&
while prompts # & do
response «— LLM(prompts.pop(), conv)
conv.append(response)
currentProg « EXTRACTPROGRAM(response)
if VX ¢(currentProg, X) then
return currentProg
else
progs « progs U currentProg
end if
end while
W < WEIGHTCOUNTER(prog, G)
We < (G, W)
prog < CEGIS(W;, ¢)

return prog

18: end procedure

4.4.3 Weighted A* Search

We implement a second variation of pCFG-synth using the A* weighted

search algorithm as the underlying enumerator. A* is a search algorithm

that chooses which paths to extend based on minimizing the cost of the

path so far and an estimate of the cost required to extend the path to the

goal, i.e., it expands nodes that minimizes

f(x) = c(x) + g(x),
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where c(x) is the cost of the path to x so far and g(x) is the estimated cost
of reaching a goal node from x. This technique was first used for guiding
synthesis by Lee et al. [57], and we adapted the algorithm from their work.

To implement our A* search, we extend the definition of the grammar
tree to aweighted grammar tree. Givena pCFGP; = (V,Z, R, S, P), aweighted
grammar tree 7 (W;) is a directed labelled graph as defined before, but
each edge has a corresponding weight, given as follows:

—log,(P[a — B]) if Pla — B] >0,
w(a — B) =

inf otherwise.
We use the negative log of the probability to ensure that higher weighted
edges correspond to those with very low probabilities.

The A* algorithm, shown in Algorithm 5, relies on two key functions:
first, the function c(x), which computes the cost of the path so far, and
second, the function g(x) which estimates the cost to extend the path to a
goal node. Assuming x is a sentential form in our language, c(x) and g(x)

are given by:

0 if x ez,
-2 ev 109, h(x;)  otherwise,

where x; indicates the i*" symbol in x, and h is the upper bound of the
probabilities of expressions that can be derived from x;, and is calculated
as the fixed point of:
Vae V.h(a) = P h(B:) |,
a () m%( [a — Bl ﬂ/ (B,)>
The function g(x) can then be thought of as the product of the probability

of each non-terminal symbol in x being converted into a terminal symbol.
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Smoothing the probability distributions: Since the A* algorithm will
not enumerate any programs whose derivation uses a rule with zero prob-

ability, we smooth the weighted grammar as follows:

wla — Bl =10 x (%)y,
withy =0.4.
Algorithm 5 A* search for pCFG-synth
1. procedure ENUMERATE(P;, @, cex )
2: Q ={0, S} D> Priority queue of candidates
3: while Q = J do
4: (f, prog) < Q.pop() > Remove program with minimal f
5: if VX € cex. ¢p(prog, X) then
6: return prog
7: end if
8: for (nt € prog) x nt’ do
o: if (nt x nt’) € P;.R then > For all applicable rules
10: prog < prog.{nt — nt’} > apply rule to prog
1 Q < QU (c(prog) + g(prog), prog)
12: end if
13: end for

14: end while

15: end procedure

4.5 Enumerative Synthesis with an Integrated

LLM (iLLM-synth)

The disadvantage of the method described in the preceding section is that

the language model cannot benefit from any additional information that
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the enumerator learns during enumeration, as all prompting happens prior
to starting the enumerative synthesis. In this section, we describe how we
integrate an LLM into an enumerative synthesis algorithm, allowing it to
update a probability distribution over the search grammar and to augment

the grammar with new production rules, as shown in Algorithm 6.
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Algorithm 6 Top-down enumerator for iLLM-synth

1: procedure ENUMERATE(W;, ¢, cex )

2:

3:

4.

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

prog «— WS
d<—0;i<0
P; < BUILDPCFG(W;)
while 1 do
if prog € Z* then
if VX € cex. ¢(prog, X) then
return prog
else
prog < S
d<0
end if
end if
if i%n = 0 then
W «— SYNTACTICFEEDBACK(W;, prog, cex)
P < BUILDPCFG(IW;)
end if
prog < REPLACENONTERMINALS(prog, P;)
de—d+1
if d = maxDepth then
prog < COMPLETEPROGRAM(prog, P;)
if prog € PreviousPrograms then
prog < S
d<0
end if
end if
f—i+1

end while

29: end procedure
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Algorithm 7 A* search for iLLM-synth
1: procedure ENUMERATE(P;, ¢, cex )

2: Q=10,S} D> Priority queue of candidates
3 i<0

4: while Q # D do

5: (f, prog) < Q.pop() > Remove program with minimal f
6: if prog € 2" then
7: if VX € cex. ¢(prog, X) then
8: return prog
9 end if
10: end if
11: if i%n =0 then
12: W < SYNTACTICFEEDBACK(W,, prog, cex)
13: P < BUILDPCFG(IW;)
14 end if
15: for (nt € prog) x nt’ do
16: if (nt x nt’) € P;.R then > For all applicable rules
17: prog « prog.{nt — nt’} > apply rule to prog
18: Q < QU(c(prog) + g(prog), prog)
19: end if
20: end for
21: f—i+1

22: end while

23: end procedure
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Algorithm 8 Syntactic feedback generator in Algorithm 6,7.
1: procedure SYNTACTICFEEDBACK(W;, prog, cex)

2: prompt < GENERATEPROMPT(prog, cex)

3: response «— LLM(prompt)

4: candidate « EXTRACTPROGRAM(response)

5: We.W «— Wz W + WEIGHTCOUNTER(response)
6: Wes.R «— Ws.RU (W;.S x response)

7: return W,

8: end procedure

4.5.1 Integrated Prompting

We construct a prompt that asks the LLM to provide helper functions to as-
sista studentin writing SMT-lib code. We give the LLM the constraints from
the target synthesis problem and the partially complete program at the
point the enumerator calls the LLM. If the LLM fails to solve the problem
with this prompt, we later add the most recently failed candidate solution
and the counterexample it failed on. These prompts are shorter than the
prompts in those used in Section 4.3 and, therefore, cheaper and faster to

run. An example Prompt 8 is as follows:

You are teaching a student to write SMT-LIB. The student
must write a function that satisfies the following
constraints:

(constraint (>= (function x y z) x))

(constraint (>= (function x y z) y))

(constraint (>= (function x y z) z))

(constraint (or (= x (function x y z)) (or (= vy (
function x y z)) (= z (function x vy 2)))))

So far, the student has written this code:
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(define-fun function ((x Int) (y Int) (z Int)) Int
(ite 2?2 2?2 ?7)

Can you suggest some helper functions for the student to
use to complete this code and replace the ??

You must print only the code and nothing else.

Prompt 8: Integrated prompt for Benchmark 1.

4.5.2 Updating the Weighted Grammar

We initialise our algorithm with a weight of 1 for each rule in the gram-
mar. We use the LLM-generated helper functions to augment the gram-
mar in the following way: first, any helper functions will be added directly
as new production rules to replace non-terminals of the correct type in
the grammar. That is, if the LLM proposes the defined function f, a set
of rules of the form V; x f are added to the grammar, for all non-terminal
symbols V; such that this rule results in syntactically correct expressions,
i.e., V; must be of the same type as the co-domain of f. This is sufficient
to guarantee syntactically correct expressions because any functions pro-
posed by the LLM that are otherwise not well-formed, e.g., they reference
variables that are not defined, are discarded. Any new rules are given a
weight equal to the average of all the current weights for rules relevant
to that non-terminal. The response parser also updates the weights of all
existing rules in the grammar, according to Equation 4.1, calculated from

the set of helper functions the LLM proposed.
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4.5.3 Integrating Syntactic Feedback into Enumerative

Search

We integrate the syntactic feedback generator into the probabilistic enu-
merator, shown in Algorithm 4, and into the A* weighted search, as shown
in Algorithm 7. Both search algorithms call the syntactic feedback gener-
ator every n'" iteration, where n is a heuristic used to ensure the LLM is
not called with the same partial program repeatedly and that the search
algorithm has time to exploit the information obtained from the LLM. Note
that, when the probabilistic grammar is updated, the h values must be re-

calculated in the A" search.

4.6 Evaluation

We evaluate our approaches on benchmarks taken from the SyGuS com-
petition [4], each with a grammar that corresponds to the full language
of their respective theories. We evaluate across three SyGuS categories:
Bit-Vector (BV), Linear Integer Arithmetic (LIA), and Invariants (INV). We
evaluate both the LLM as a stand-alone synthesiser, the probabilistic enu-
merator, and A* implementations with a pre-trained pCFG and the enumer-
ator with a pre-trained syntactic oracle. We utilise OpenAl's GPT-3.5-turbo-
16k model to generate the prompts used for the pre-trained pCFG and the
standalone LLM evaluation because this model supports longer prompts.
We configure this with a temperature of 1.0, conversation-style messaging.
We use GPT-3.5-turbo for iLLM-synth, which has shorter prompts. We use
the 4.8.12 64-bit version of Z3 for verification and CVC5 version 1.1.0 as a

baseline.
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BV (384) LIA (87) INV (138) Total (609)
Methods # time(s) | # time(s) # time(s) # %
LLM only 137 13.5 54 7.10 112 29.2 303 49.8%
e-pCFG-synth © 196.0 48.3 |24.0 40.0 | 254 100.5 | 2454 40.3%
A"-pCFG-synth 262 60.1 35 72.7 25 99.7 322 52.9%

LLM U e-pCFG-synth | 255.0 37.0 | 64.0 17.20 | 117.7 404 |436.7 71.7%
LLM U A"-pCFG-synth | 305.0 350 |650 7187 |118.0 336 |488.0 80.1%

e-iLLM-synth © 2410 882 |634 93 65.3 254 |370.0 60.8%
A"-iLLM-synth ° 2723 246 |683 208 67.3 436 |408.0 67.0%
enumerator® 142.7 7.2 250 1.53 21.0 3.2 188.7 31.0%
A 253.0 254 |340 7319 | 220 31.1 |309.0 50.7%
Cvc5 2920 171 |43.0 1953 | 80.0 23.6 |4150 68.1%

Table 4.1: Summary of results. We run nondeterministic results, marked °,
3 times and report the average (standard deviation is less than 1% for all
methods except the baseline enumerator for the number of benchmarks
solved). We highlight the best result in terms of the number of bench-
marks solved in each category. The timeout is 600s. Times in jtalic indicate
results that may vary depending on the load on the OpenAlI servers. The
times for pCFG-synth do not include the time to call the standalone LLM
and generate the wCFGs, but these are included in the times for LLM U

pCFG-synth.

4.6.1 Evaluation of the Stand-Alone LLM

We prompt the LLM until it produces up to 6 complete synthesis attempts
per benchmark, with the results reported in line 1 of Table 4.1. Any in-
complete solutions are discarded (i.e., functions without a function body),
although these are relatively rare, and we discard only 0.85% of programs
we generate. In total, the LLM solves 49% of benchmarks, performing bet-

ter in the invariant and LIA categories than the bit-vector category. On
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average, for the benchmarks it can solve, it takes 4 attempts to produce a
correct solution. The average time for the LLM to generate a program is
approximately 5s using the OpenAl Python API. However, this is depend-
ent on OpenAl, and we report these times only as estimates in Table 4.1.
We allow the LLM only 6 attempts to solve the problem since, by the 6"
iteration, the number of new solutions the LLM finds has dropped to < 2%

(and it finds 0 new solutions for LIA).

4.6.2 Evaluation of pCFG-synth.

We evaluate both variants of pCFG-synth (with the probabilistic enumer-
ator, denoted e-pCFG-synth, and with A®, denoted A"-pCFG-synth) using
the wCFG obtained from the LLM. As a baseline, we run the same algorithms
assigning a weight of 1 to every rule in the grammar (referred to as “enu-
merator” and A" respectively in the results). pCFG-synth increases the num-
ber of benchmarks the probabilistic enumerator can solve by 30%, but
barely increases the number A® can solve, although the exact sets of bench-
marks which A* and A*-pCFG-synth solve do differ significantly. We hypo-
thesise that this is because A", guided by the pCFG with equal weights for
all rules, is very good at generating short solutions, and A*-pCFG-synth is
worse at short solutions but better at generating more complex solutions

guided by the pCFG.

We also report the results obtained by the union of the LLM alone and
pCFG-synth, i.e., if the LLM solves the benchmark, we do not deploy the
enumerator. This is a more realistic representation of how such a tech-
nique would be used and demonstrates that the enumerator can over-
come shortcomings of the LLM and vice versa. The union of the LLM and A™-

pCFG-synth substantially outperforms CVC5, solving 73 more benchmarks.
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4.6.3 Evaluating iLLM-synth.

We evaluate both variants of iLLM-synth, denoted e-iLLM-synth and A*-iLLM-
synth. We set the temperature for e-iLLM-synth to 1, but find that A*-iLLM-
synth performs better with a temperature set to 0, which we hypothesise is
due to the determinism of the algorithm. We find that iLLM-synth outper-
forms the enumerator of pCFG-synth, and gets close to the performance
of CVC5, suggesting that the ability to prompt the LLM with additional in-
formation obtained during enumeration allows the LLM to provide better
guidance to the enumerator, as well as to more frequently propose use-
ful helper functions. We do find that iLLM-synth performs less well than
methods incorporating the stand-alone LLM on the invariant benchmarks,
which is likely because the invariant benchmarks benefit from the custom
prompting technique described in Section 4.3.1. Future work would in-
volve identifying further categories of benchmarks that benefit from cus-
tom prompts. It is worth noting that neither the probabilistic enumerator
nor the A” implementation includes many of the optimisations that ma-
ture solvers such as CVC5 implement, and yet, by integrating these simple
algorithms with syntactic feedback from an LLM, they have achieved per-

formance on par with the state-of-the-art enumerative solver.

4.6.4 Failure Modes.

We manually examine a sample of the stand-alone LLM errors and give
examples of such errors. Broadly, we identify the following common fail-
ures: Misunderstandings due to complex constraints (the LLM suggests
solutions that are not syntactically close to the correct solution); simple
syntactic errors, e.g., applying non-commutative operators to operands in

the wrong order, concatenating bit-vectors in the wrong order or hallu-
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cinating operations; simple semantic errors, e.g., operators in the wrong
order. Errors in the first category are not helpful to our guided enumerat-
ors, but the remaining categories of error still allow us to generate a wCFG
thatis likely to indicate the area of the solution. The benchmarks that CVC5
can solve and our enumerative techniques cannot, tend to have complex
constraints and relatively short solutions that use less common operators
(e.q., bitwise operators). We hypothesise that the LLM guidance becomes
an impediment to the enumerator in these scenarios. In contrast, the av-
erage length (in characters) of a solution for benchmarks uniquely solved
by the LLM is 4.7x the length of a solution for benchmarks uniquely solved
by CVC5. Using the LLM to guide the enumerators increases the length of
solutions that the enumerators can find, for instance, all solutions found
by A* contain fewer than 3 operators, but A*-iLLM-synth finds solutions with

greater than 20 operators.

Completing verification conditions:

In the initial phase of our research, we constructed prompts based on ask-
ing the LLM to complete an SMT-LIB file that encodes the verification condi-
tions for the synthesis problem, so that it would be unsatisfiable. Consider

the following example:

1 (set-logic LIA)

2 (synth-fun function ((x Int) (y Int)) Int)

3 (declare-var x Int)

4 (declare-var y Int)

5 | (>= (function x y) x))

6 ( (>= (function x y) vy))

7 ( ( (= x (function x y)) (= vy (function x y)

)))
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8 (check-synth)

Benchmark 2: A SyGusS specification that asks for a program that returns

x if x - y > 0 otherwise returns y.

The corresponding prompt structure is as follows:

; Complete the following SMT file so that it is
unsatisfiable
(set-logic LIA)
(declare-fun x () Int)
(declare-fun y () Int)
(assert (or (not (>= (function x y) X))
(not (>= (function x y) vy))
(not (or (= x (function x y)) (= y (function

Xy))))))
(check-sat)

(define-fun function ((x Int) (y Int)) Int
(

Prompt 9: LLM direct fill-in task.

Here, the LLM's task was to fill in missing information. This initial ap-

proach did not yield satisfactory results.

Fine-tuning:

We experimented with fine-tuning the Curie model on a subset of the bench-
marks, using \n;###\n for prompt endings and \n;END for completion
markers. An example structure for fine-tuning from the training set is
provided here:
{"prompt":
" (set-logic BV)\n(declare-fun x () (_ BitVec 32))\n
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(define-fun hd@3 ((x (_ BitVec 32))) (_ BitVec 32)\n
(bvand x (bvneg x)))\n
(assert (or (not (= (hd@3 x) (f x)))))\n
(check-sat)\n
; define function f\n
(define-fun f ((x (_ BitVec 32))) (_ BitVec 32)\n
yH#H\N"
"completion":
" (bvand x (bvneg x))) \n;END"}
Post-adjustment, the Curie model was evaluated using a smaller test
set, excludinginvariant synthesis, and achieved a 25% success rate in bench-
marks. Further refinements to the training set, such as expanding let ex-

pressions, did not improve results.

Synthesis via Python code:

We experimented with asking the LLM to write solutions in Python and

then translate the given solution into an SMT-LIB function.

(set-logic LIA)

(synth-fun function ((x Int) (y Int)) Int))

(declare-var x Int)

(declare-var y Int)

(constraint (>= (function x y) x))

(constraint (>= (function x y) y))

(constraint (or (= x (function x y)) (= y (function x y)
)))

(check-synth)

Write a Python method function. Requirements: 1. No

built-in Python functions. 2. Adhere to the above SMT
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-LIB constraints.

Prompt 10: Prompt for function shown in Benchmark 2.

Upon the LLM generating a possible solution, we employed an addi-
tional prompt to convert the Python method into the SMT-LIB function

format:

Translate the Python method into SMT-LIB code function,

focusing solely on the SMT-LIB format.

Prompt 11: Request for converting Python to SMT-LIB code.

This did not work well, as the LLM frequently failed to translate Python
into SMT-LIB accurately.

Prompt Method | Solved %

Lisp 22/50 44%

Python 19/50 38%

Table 4.2: Comparative analysis of prompt methods: efficacy in solving

benchmarks with Lisp, and Python prompts.

Table 4.2 presents a comparative study of various prompting methods
in solving benchmarks, highlighting the effectiveness of Lisp, and Python-
based prompts. The results indicate a notable enhancement in problem-

solving efficiency when using Lisp prompts.

Unravelling LLM’s shortcomings:

LLM often encounters difficulties with benchmarks characterized by mul-
tiple constraints involving longer derivations. These predefined functions
contribute to the complexity and length of each constraint, posing a signi-

ficant challenge for the LLM. For example:
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1 (constraint (functionA (and (= a @) (= @ d)) (= 0 (
functionB a d))))

2 (constraint (functionA (functionD (= g (functionB a d))
(>>ad) (=b(+al)) (=h(+g1l)) (=1 (+h1)))
(= 1 (functionB b d))))

3 (constraint (functionA (functionD (= g (functionB a d))
(>>ad) (e (+d1)) (=h (+g1l)) (or (and (< a e)

(=3 (+h1))) (and (>=ae) (=] h)))) (=7 (

functionB a e))))

4 (constraint (functionA (functionC (= g (functionB a d))
(<ad) (=b (+al) (=h(+g1l))) (= h (functionB
b d))))

5 (constraint (functionA (functionD (= g (functionB a d))
(<ad) (e (+d1)) (=h(+g1l)) (=1 (+h1l))) (=

i (functionB a e))))

Benchmark 3: Multiple long constraints for functionB.

If we expand the function applications, we get Benchmark 4, which still

contains long derivations.

1 (constraint (or (not (and (= a @) (= 0 d))) (= 0 (
functionB a d))))

2 (constraint (or (not (and (and (and (= g (functionB a d)
) (>=ad)) (=b(+al))) (=h(+g1l))) (=1 (+h
1))) (= i (functionB b d))))

3 (constraint (or (not (and (and (and (= g (functionB a d)
) (>=ad)) (e (+d1))) (=h(+g1))) (or (and (<

ae) (=] (+h1))) (and (>=ae) (=37 h)))) (=7 (

functionB a e))))

4 (constraint (or (not (and (and (= g (functionB a d)) (<

ad)) (=b(+al))) (=h(+g1l))) (=h (functionB b
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d))))
5 ( ( ( ( ( ( (= g (functionB a d)

) (<ad)) (e (+d1))) (=h(+g1l))) (=1 (+h1)

)) (= i (functionB a e))))

Benchmark 4: Expanded constraints for functionB.

Such constraints are intricate and challenging for the LLM to under-
stand accurately, making it difficult to produce a response satisfying the
specification. The LLM produced a program that contains functionB it-
self. However, the pCFG-synth and iLLM-synth can solve the problem with
the distribution of rules, whereas the state-of-the-art solver CVC5 cannot.

In contrast, the LLM exhibits a better understanding of benchmarks

with shorter derivation for each constraint, such as:

1 ( (functionA ( (< a 100) (< c 100)) (
functionB a b c)))

2 | (functionA (functionC (functionB a b c) (< a
100) (< 100 c) (functionA vr4d ( (=e (+al)) (=
f c))) (functionA ( d) ( (=e (-al) (=T (-
c 1))))) (functionB e b f)))

3 | (functionA ( (functionB a b c) ( (
(< a 100) (< 100 c)))) ( (>= a 100) (<= c 100))))

Benchmark 5: Shorter derivations in constraints for functionB.

These constraints are less complex, making them more accessible for the
LLM to process.
Another challenge arises with benchmarks that necessitate very short
solutions. For instance, a benchmark requiring a solution like:
(define-fun function ((a Int)) Bool true)

Response 3: A concise program unattainable by LLM.
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In these cases, the LLM tends to propose lengthier solutions, failing to
align with the benchmark’s requirement for conciseness. This pattern is

evident across all 6 attempts made by the LLM.

Shuffling operator or variable:

Below is an example benchmark for finding f:

1 (set-logic BV)

2 (define-fun function ((x (_ BitVec 32))) (_ BitVec 32)
3 ( X ( X #x00000001)))

4 (declare-var x (_ BitVec 32))

5 | (= (function x) (f x)))

6 (check-synth)

Benchmark 6: A SyGuS specification asking for a Bit-Vector program.

LLM failed to provide this exact solution but contributed significantly
by suggesting a similar program with the correct operators, albeit in an

incorrect order. The program suggested by the LLM is:

(define-fun function ((x (_ BitVec 32))) (_ BitVec 32) (
bvor x (bvadd x (concat #bl (_ bvd 31))))).

Response 4: Correct operators with incorrect order.

In this program, the LLM correctly identifies the use of a bvor and
bvadd but misplaces the components of the bit-vector representing the
number 1. The correct solution requires swapping the positions of #b1l
and (_ bv@ 31) in the concatenation.

This case demonstrates that while the LLM may not always generate a
completely accurate solution, it can provide valuable insights or compon-
ents of a solution. The enumerator, guided by the distribution of rules

inferred from the LLM-generated programs, can utilise these insights to
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reach a correct solution.

Mistaken conditional statements:

In situations where an individual constructs an if-then-else statement but
makes an error in defining the correct condition, we can identify this issue

through a specific example of finding function:

1 ( (>= (function a b cde f g) a))
2 ( (>= (function a b cde f g) b))
3 ( (>= (function a b cde f g) c))
4 ( (>= (function a b cde f g) d))
5 ( (>= (function a b c de f g) e))
6 ( (>= (function a b cde f g) f))
7 | (>= (function a b cde f g) g))
8 | ( (= a (function a bcde f g)) ( (= b

(function a b cde T g)) ( (= ¢ (function a b c d
e fg)) ( (= d (function a b cde f g)) ( (= e (
function a bcde f g)) ( (= f (function a b c d e
f g)) (=g (function a bcde fqg)))))))))

Benchmark 7: SyGusS specification for constructing a program contains
several i f-then-else Operators.
In this scenario, the accurate and appropriate solution should be

1 (define-fun function ((a Int) (b Int) (c Int) (d Int) (e
Int) (f Int) (g Int)) Int

2 ( ( (>>ab) (>=ac) (>=ad) (>=ae) (>= a
f) (>=ag)) a
3 ( ( (>=ba) (>=bc) (>=bd) (>=b e)

(>=b f) (>=bg)) b

4 ( ( (>=ca) (>=cb) (>=cd) (>=c e
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) (>=c f) (>=cqg)) c
5 (ite (and (>=d a) (>=d b) (>=d c)
(>=de) (>>df) (>=dg)) d

6 (ite (and (>= e a) (>= e b) (>= e
c) (>=ed) (>=e f) (>=e g))
e

7 (ite (and (>= f a) (>= f b)

(>=f c) (>= T d) (>=f e)
(>=fg)) f9)))))))

Program 4.19: Solution program for Benchmark 7.

However, the LLM generates:

(define-fun function ((vr® Int) (b Int) (c Int) (d Int)
(e Int) (f Int) (g Int)) Int
(ite (and (<= vr@ b) (<= b c) (<= cd) (<=d e) (<= e
f) (<= f9)) g
(ite (and (<= vr@ b) (<= b c) (<= c d) (<=d e)
(<=e f)) f
(ite (and (<= vr@ b) (<= b c) (<= c d) (<= d
e)) e
(ite (and (<= vr@ b) (<= Db c) (<= c d))
d
(ite (and (<= vi0 b) (<= b c)) c
(ite (<= vr@ b) b vr0)))))))

Response 5: Program generated by LLM for Example 7.

, Which, although sharing a similar structure, inaccurately defines the con-

ditions.
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Unorthodox nesting and syntax errors:

A common problem occurs when LLM endeavours to construct a nested if-
then-else statement. However, their nesting level is insufficient, and they
also introduce operators incompatible with SyGusS. For instance, while the

correct solution should involve a properly nested if-then-else structure

1 (define-fun function ((a Int) (b Int)) Int
2 ( (>= (+ a b) 2)

3 ( (>= (+ a b) 3)

4 ( (>= (+ a b) 4)

5 ( (>= (+ a b) 5)

6 (or (>= (+ a b) 6)

7 (=a (+ 11 (x (- 1) b))))
8 (=a (+1(x (-1)Db))))

9 (=a (+3 (x (-1)b))))

10 (=a (+1 (x (-1) b)))))

11 (+ (- 60) (*x 60 a) (* 60 b))

12 ( ( (>= (+ a b) 2)

13 ( (>= (+ a b) 3)

14 ( (>= (+ a b) 4)

15 ( (>= (+ a b) 5)

16 (or (= a (+ 11 (x (- 1) b)))
17 ( (>= (+ a b) 6)))
18 (=a (+ (-9 (x (-1) b))))
19 (=a (+ (-1) (x (-1) b)))))
20 (=a (+ (-1) (x (-1) b))))

21 (+ 50 (x 50 a) (* 50 b))

22 ( ( (>= (+ a b) 2)

23 ( (>= (+ a b) 3)

24 ( (>= (+ a b) 4)
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25 (or ( (>= (+ a b) 5))

26 ( (>= (+ a b) 6)

27 (=a (+1(x(-1)Db)))

28 (=a (+ (-9 (x (-1) b))))
)

29 (=a (+7 (x (-1) b))))

30 (=a (+1(x(-1)Db)))))

31 (+ (- 40) (* 40 a) (= 40 b))

32 ( ( (>= (+ a b) 2)

33 ( (>= (+ a b) 3)

34 ( (>= (+ a b) 4)

35 (or (>= (+ a b) 6)

36 ( (>= (+ a b) 5))

37 ( (=a (+ (-1) (x (-1)
b)))))

38 ( (=a (+ (-1) (x (- 1) b)))

))

39 ( (=a (+3 (x (-1)b))))))

40 (+ (- 20) (* 20 a) (* 20 b))

41 (+ 10 (* 10 a) (* 10 b)))))))

Program 4.21: Solution program with nested if-then-else operators.

The LLM generates the program below Program 4.22, which does not
achieve the required nesting level and erroneously incorporates operators.

For example, if is syntactically incorrect in the SyGuS framework.

1 (define-fun function ((a Int) (b Int)) Int

2 ( (<= (functionA a b) 1)
3 (if (= (functionA a b) 1)
4 (functionG (functionB a b 1))

5 Q)
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(ite (<= (functionA a b) 2)
(if (= (functionA a b) 2)
(functionG (functionH (functionB a b (-
1))))
)
(ite (<= (functionA a b) 3)
(if (= (functionA a b) 3)
(functionG (functionC (functionB a b
1)))
0)
(ite (<= (functionA a b) 4)
(if (= (functionA a b) 4)
(functionG (functionD (functionB
ab (-1))))
)
(ite (<= (functionA a b) 5)
(if (= (functionA a b) 5)
(functionG (functionE (
functionB a b 1)))
)
(functionG (functionF (functionB

ab (-1))))))))))

Program 4.22: Program with insufficient nesting and syntactic

incompatibilities.

4.6.5 Programming-by-Example.

We omit benchmarks from the syntax-guided synthesis competition tracks

that solely focus on programming-by-example (PBE)(i.e., specifying a pro-
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gram only using input-output examples and a grammar). We omit these
benchmarks for two reasons: first, since training data is trivial to generate
for PBE, unlike general logical specifications [85], there are many other suc-
cessful machine-learning driven synthesis techniques that can be trained
for PBE techniques[11]. Second, our approaches are effective when the
LLM can provide guidance to the enumerator, which comes from prompt-
ing the LLM with the logical constraints that form the specification. If we
prompt the LLM using the prompting techniques outlined in Section 4.3.1
with a PBE specification, it tends to provide a solution in the form of a large
case split over the input examples, which returns specific outputs for each
input. This is not useful for guiding the enumerator because the LLM over-
fits to the examples in the specification and fails to provide any bias to-
wards operators other than “if-then-else”. To extend our approach to PBE,
we would need to use a prompting approach tailored to input-output ex-

amples.

4.7 Threats to Validity

LLM Training Data: The SyGusS problems are publicly available and might
be part of the training data for the LLM we use, although we believe

the solutions were not publicly available at the time of training.

Reproducibility: These experiments use GPT-3.5, an LLM available via API
from OpenAl. We have recorded the responses and parameters gen-
erated by the LLM in all experiments, but these may not be reprodu-
cible [82] since GPT-3.5 behaves non-deterministically in a way that
cannot be seeded. However, we observe very small variations in the
number of benchmarks solved in our experiments (although greater

variation in the average solving time). It is also possible that OpenAl
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deprecates this LLM and its associated API or updates it and changes

its behaviour in the future.

Benchmark Bias: The benchmark set is taken from the SyGuS competi-
tion [4], but may not be very diverse and may not be representative
of synthesis problems “in the wild”. Nevertheless, this is a standard

benchmark set used in many formal synthesis papers.

Hyperparameters: We have not invested time in parameter tuning, and
better or worse results may be obtained by changing the LLM para-
meters (temperature), or adjusting the weights, enumeration depth,

and heuristic functionsin the probabilistic enumerator and A” algorithms.
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Guided Tensor Lifting

The material in this chapter comes from paper Guided Tensor Lifting [61],
published at PLDI 2025. I designed and implemented the framework, al-
gorithms and carried out the evaluation. The verification components were
developed jointly with José Wesley de Souza Magalhdes and Alexander

Brauckmann.

5.1 Introduction

Building on the probabilistic-guidance framework introduced in Chapter 4,
this chapter explores how to transplant those ideas into a very different
setting, automatically lifting dense tensor kernels from C into the TACO
domain-specific language (DSL).

Recent years have witnessed rapid growth in the number and import-
ance of machine learning workloads. While used in a diverse number of ap-
plications, their fundamental building block is tensor contractions, which
dominate execution time. For this reason, a large number of specialised
tensor domain-specific languages (DSLs) have appeared, capable of pro-

ducing high-performance code ([52, 38, 86, 1, 18, 37]). Their associated

73
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compilers are capable of extracting domain-specific information to exploit

hardware-specific features and vendor-tuned libraries.

To access such performance, applications have to be written in one
or more high-level DSLs. While this is acceptable for new applications,
it means that existing workloads written in standard programming lan-
guages are unable to directly access a platform’s potential performance.
While manually rewriting a program to a DSL may be a worthwhile cost, it
becomes a serious impediment if it has to be repeated for new emerging
DSLs. This problem of manual porting or lifting existing code to higher-
level DSLs has been identified by several recent works that propose auto-
mated techniques. The most popular approaches use varying forms of pro-
gram synthesis, where a DSLs space is searched for a matching program
([49, 98, 70]). However, program synthesis is expensive and struggles to

scale to multi-dimensional tensor workloads.

To overcome this scalability issue, existing schemes rely on aggressive
hard-wired heuristics that trade-off coverage for time. In [70], domain-
specific polyhedral analysis is used to prune the search space. This works
well on low-dimensional problems but suffers from exponential growth.
Similarly, in [92], the user provides a template to aid search. While narrowly

effective, such heuristics limit portability and are a limit to generalisation.

A completely different approach is to use neural machine translation
based on large language models (LLMs). They have proved highly suc-
cessful with a number of program generation tasks [25, 30]. They are fast
and scale with program complexity, but unfortunately, they are inaccurate.
What we would like is to combine the power of LLMs with the accuracy of

synthesis.

This chapter explores a novel combination of LLMs and program syn-

thesis. It uses an LLM to suggest a number of possible solutions. It then
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builds a probabilistic grammar of templates, based on the proposed solu-
tions, and then uses this grammar to drive an enumerative search of gram-
mar templates. Our approach, termed STAGG (Synthesis of Tensor Algebra
Guided by Grammars) is able to outperform all existing approaches. It
achieves 99% lifting accuracy on a pre-existing large-scale benchmark suite
of dense tensor algebra and is able to do this without any pre-wired heur-

istics.

Contributions:

This chapter makes the following contributions:

* Two novel synthesis algorithms that combine LLM guesses and pro-

gram synthesis to scalably lift dense tensor code.
+ Alarge-scale evaluation of state-of-the-art tensor program lifting.

*+ Greater coverage than existing techniques.

5.2 Motivation

The tensor DSL we target in this chapter is TACO [52]. Whilst TACO may
be best known for sparse computation, it also gives superior performance
over dense code on multicores and GPUs. Although recent work has tackled
matching certain sparse computation to specific high-performance APIs [55,
35], this chapter focuses solely on lifting legacy dense tensor computation
to a high-level programming language [51].

TACO syntax is based on Einstein summation (einsum) notation, a lan-
guage for representing linear algebra operations using indexing expres-
sions. The TACO compiler takes a tensor expression as input and gener-
ates highly optimised kernels. TACO-generated code exploits the paral-

lel nature of both dense tensor algebra operations and multi-core/GPU
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architectures. It uses domain-specific knowledge to optimise and auto-
parallelise, which related work has reported results in average speedups
of 1.8x and 24.1x over the original program on CPUs and GPUs respect-
ively [70].

Einsum notation:

TACO supports einsum notation, as do other frameworks including Py-
Torch [86], Halide [94]. While these alternatives may support a larger set
of operations, targeting TACO allows a direct apples-to-apples comparison
against prior work [70, 93].

Einsum expressions consist of a sequence of indexing variables, each
one representing an iterator over a different tensor dimension. The tradi-
tional einsum notation expresses tensor multiplication and implicit sum-
mation on the indices that are absent in the output tensor. TACO uses an
extended version of the original notation that also supports subtraction
and division. Unlike other einsum-based frameworks such as the NumPy
[38] einsum API, the tensors in TACO programs must be explicitly declared.

Figure 5.4 shows the TACO grammar addressed in this chapter.

Problem statement:

Formally, given a legacy program p,, written in a low-level language
such as C, STAGG aims to find an equivalent program p, written in TACO,
that meets the specification VX.p,(X) = p,(X), where X is a vector of input
arguments. That is, p, produces the same output as p, on all possible in-

puts.

Example:
The synthesis task that STAGG solves is to synthesise a TACO program
p, such that VX.p,(X) = p.(X), where X is a vector of inputs, in this case Mat1,

Mat2, Result. We now illustrate this approach on the example input C
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program shown in Benchmark 8.

Given this program, STAGG first queries a large language model to ask
for a set of candidate solutions. The prompt template we use is shown be-
low in Prompt 12. This gives us a set of candidate solutions in Response 6.

STAGG then learns a probabilistic context-free grammar that captures
this set of solutions as templates. We describe how we learn this gram-
mar in Section 5.4.2. The grammar below in Figure 5.1 shows probabilities
for each production rule in parentheses. Each tensor and constant in the
grammar is treated as a symbolic variable, which can later be replaced

when the template is instantiated.

1 void function(int N, int* Matl, int* Mat2, int* Result)({

2 int* p_ml;

3 intx p_m2;

4 int* p_t;

5 int i, f;

6 p_ml = Matl,;

7 p_t = Result;

8 (f =0, f <N,; f++) {

9 *xp_t = 0,

10 p_m2 = &Mat2[0];

11 (1 =0; 1 < N; i++)
12 *p_t += *p_ml++ * xp_m2++;
13 p_t++;

14 }

15 }

Benchmark 8: A C implementation of Zﬁ; Matl(f x N +i)-Mat2(i). The
result is a dot product between the f-th row of Mat1 and vector Mat2. The

equivalent synthesized TACO expressionisa(i) = b(i,j) * c(j)
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You are a scientific assistant that knows a lot about
transpilation. Translate the following C code to an
expression in the TACO tensor index notation. The
expression must be valid as input to the taco
compiler. Return a list with 10 possible expressions.

Return the list and only the list, no explanations.

{the input C program}

Prompt 12: The prompt requesting 10 TACO expressions for a given C
program. The temperature we use is 1.0, and the role is “You are a

scientific assistant that knows a lot about transpilation”

We use a weighted A* search to explore the space of the grammar, in-
spired by work in the literature [64, 57], enhanced with penalty functions
that penalise (partial or complete) templates that fail to adhere to syntactic
constraints. When a complete template is found, this is passed to a tem-
plate validator, which searches for all possible instantiations of the tem-
plate and evaluates them against a set of input-output examples. A valid
template, in this instance, would be the templatea(i) = b(1i,j) * c(j).
This is instantiated to the concrete program Result(i) = Matl(i,j) *
Mat2(j). We compile this TACO program using the TACO compiler into C
code, and check with bounded model checking that the two pieces of C

code are equivalent.

r(f) = ml(i, ) * m2(f)
Result(i) = Matl(i,f)*Mat2(f)
Result(i) := Matl(f,i) * Mat2(i)
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Result(f) = sum(f, matl(f, i) * mat2(i))

Response 6: LLM-generated candidate solutions for matrix product
computations based on the implementation in Benchmark 8. Displayed

are a subset of 10 generated solutions, trimmed for brevity.

1 PROGRAM = TENSOR1 EXPR (1)
2 TENSOR1 n= (1)
3 EXPR = TENSOR2 (@) | CONSTANT (@) |
EXPR OP EXPR (1)
4 OP = (0.2) | (0) | (0.8) |
(0)
5 TENSOR2 n= (0.2) | (0.1) |
(0.3) | (0.2) |

Figure 5.1: A probabilistic context-free grammar template.
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5.3 Overview of STAGG

S O .' Failure @ Success
Prompt 0 <0 10 Possible | 10 Possible
Program | o ;&'&:. Solutions Bounded
0=
LLM Model Checking
Probabilistic T

Grammar

TACO
Candldate Program

T Success

Left Hand % ; 5 > %
'. Slde Dimension Candidate] Validation
Dlmenswnal Search Failure
Analysis \_/

Figure 5.2: Overview of STAGG. We query the LLM to provide 10 possible

solutions in TACO that are equivalent to the input code C. Based on the LLM
response, we build a probabilistic grammar and enumerate the space of
template programs described by the said grammar. We validate a candid-
ate using I/0 examples, and if it passes all tests, we proceed to verification
to prove equivalence with the original C implementation. The input code
is also analysed to predict the dimensionality of the left-hand side tensor

in the solution.

Lifting to tensor DSLs is a challenging problem for program synthesis, and
existing enumerative techniques are capable of accurate translation but
rely on hand-written heuristics in order to scale. In contrast, highly scal-
able machine-learning-based approaches like language models fail to give
accurate translations due to the complexity of the benchmarks. The key in-
sight behind STAGG is that we can achieve the best of both worlds by using
an LLM to learn the heuristics for an enumerative solver.

To that end, STAGG, as shown in Figure 5.2, implements a multi-staged

hybrid synthesis approach.

@ First, we construct a prompt based on the input C code and ask the LLM

to propose 10 translated solutions.
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@ We proceed to construct a probabilistic grammar, which represents the

space of solutions in the form of templates.

® We then search this space of templates with a two-stage enumerative
search: first, we search the space of templates with a search inspired
by A%, then, given a template, we search for a valid completion of the

template against a set of input-output examples.

@ Ifacompletedtemplate is found that satisfies all input-output examples,
we perform bounded verification with a bounded model checker to
validate that the completed template is equivalent to the original C
code. If it fails verification, we return to the template enumeration

stage.

5.4 Learning a Grammar of Templates

The first step of STAGG uses a large language model to generate a set of
candidate solutions for the synthesis problem in hand, using the prompt
shown in Section 5.2. This gives us a set of candidate solutions, P. We ask
for 10 solutions, but we parse in as many solutions as the LLM gives us
(which is sometimes more than 10) and discard any syntactically incorrect
solutions.

Given a set of incorrect candidate solutions from the LLM, we hypothes-
ise that, even though none of the candidate solutions were precisely cor-
rect, the correct solution is likely to lie in the neighbourhood of the LLM's
guesses. To that end, we characterise this neighbourhood using a prob-
abilistic grammar of templates. We use a context-free grammar, but note
that, in principle, any probabilistic model that characterises the neighbour-

hood of guesses could be used. First, let us define some of the preliminar-
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ies we will need for this section.

5.4.1 Constructing a Grammar of Templates

Capturing the search space as a grammar of templates rather than com-
plete TACO programs has two advantages: first, in comparison to using
the full TACO grammar, it reduces the search space that the enumerat-
ive synthesis process has to search; and second, it allows us to group se-
mantically equivalent but syntactically different candidate expressions to-
gether as one when constructing the weighted context-free grammar. For
example, expressions like 1 t(f) = ml(i, f) =% m2(f) and 3 Tar-
get(i) = Matl(f,i) = Mat2(i) in LLM Response 6, are equivalent in
structure (we use a preprocessing to swap = to = before parsing), yet they

would yield different terminal rules in the full grammar due to variations

in notation.
PROGRAM PROGRAM PROGRAM
TENSOR EXPR TENSOR EXPR TENSOR EXPR
///‘ \\\.ﬁ i ///‘ \\\f_ £ ///// \\\\
f EXPR EXPR a i EXPR EXPRTarget i EXPR EXPR
i f om2 f ioioc i foi i

Figure 5.3: Expression standardisation. We omit part of the derivation for

brevity.

Given a set of candidate solutions, the first step is to construct a gram-
mar of templates that captures the full set of solutions. The full grammar
for TACO programs, Gy,co is shown in Figure 5.4. A TACO program is any
program in Z(Graco)-

Definition 3 (Templates). We define a TACO template t to be any string ob-
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tained by taking a program p € ¥(Grac0) and replacing all tensors with sym-
bolic tensor variables, denoted t,, t,, ... and all constants with constant symbols

const,, const,, ...

Given a set of candidate programs from the LLM, P, we aim to find a
grammar G, that contains a set of templates < that allow us to generate

all programs p € P. A substitution
S=(t; = s, t, > s}, ..., const, — s5)

is mapping from symbolic tensor variables and constant symbols to ter-

minal symbols in the grammar G;,co. A template generates a program if
AS.t.{S} =p,

where t.S indicates the result of replacing all occurrences of t, with s§, and
t, with s5 etcin t. Thus, our requirement on our grammar is two constraints:
first, that

Vi(ted) = 1€ 9,

and second, that

VpePate T A3S.t.{S}=p.

This is obviously trivially satisfied by the complete grammar of TACO
programs, yet it is undesirable as it has not reduced our search space. We
also aim to create a grammar that is as small as possible, whilst avoiding
over-fitting, and we attempt to optimise this trade-off by the method of

construction described in the following section.

Templatized candidate solution:

We obtain the grammar G, by first inferring a template for each solution

in P. The first step involves parsing each p € Pinto an Abstract Syntax Tree
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(AST), a structured representation that captures the hierarchical organisa-
tion of the expression. The AST organises operations, tensor identifiers,
and indices as distinct nodes, allowing systematic traversal and manipula-
tion. For example, consider the expression1 t(f) = m1(1i, f) * m2(f)
in Response 6 can be parsed as the left tree in Figure 5.3. We then trans-
form the AST in three stages: Tensor Templatization, Index Standardisation,

and Constant Templatization.
Tensor templatization:

We replace each tensor name in the expression with a symbolic tensor
variable. From hereon, we use a, b, ¢, as the symbolic tensor variables
t,, t,, ts, ..., to align with the variable names in the code examples. The iden-
tifiers are assigned in alphabetical order—starting with a for the left-hand
side tensor and using b, ¢, d, ... sequentially for tensors on the right-hand
side, based on their order of first appearance. The expression t(f) =
ml(i, f) = m2(f) will be transformedintoa(f) = b(i,f) * c(f) by
this step.

Index standardisation:

The index standardisation step ensures that each tensor expression in
the grammar uses a consistent set of index variables, irrespective of the
original indices in the input expression. Each unique index variable en-
countered in an expression is mapped to the next available symbol from
the canonical set {1, j, k, 1} in alphabetical order. The expression a(f) =
b(i,f) * c(f) will betransformedtoa(i) = b(j,i) * c(i) by this
step, as shown in the middle in Figure 5.3. The index variables do not need
to be replaced by template instantiation as they are local variables to the
program.

Constant templatization:

Any constants in the candidate solutions are replaced with a symbolic
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constant Const. The template instantiation step will instantiate from a list

of constants found in the input source code.

Refining the grammar:

Given the templatized candidate solutions 7, we wish to construct a prob-
abilistic grammar that represents the space of these solutions, without
substantially over-fitting. The first step is to construct a context-free gram-

mar that defines this set of templates.

We start with the base grammar of TACO programs, shown in Figure 5.4.
We then restrict the set of tensor names to be the names we have chosen
as symbolic tensor variables and constants, namely a, b, ¢, ... and const,
and also limit the set of index variables to be j, j, k, /, .... In theory, this per-
mits 26 tensor IDs and 4 index variables, because one can always infer
whether a variable is an index or a tensor identifier by context. In practice,
we never need this many, and searching a space that includes up to 26 4-
dimensional tensors is obviously impractical. This section addresses how
we initially reduced this search space. Namely, by predicting the dimen-

sions of the tensors in order to refine the grammar.
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1 PROGRAM z= TENSOR EXPR
2 TENSOR z= IDENTIFIER |
IDENTIFIER INDEX-EXPR
3 EXPR z= TENSOR | CONSTANT | EXPR |
EXPR | EXPR EXPR |
EXPR EXPR | EXPR EXPR |
EXPR EXPR
4 INDEX-EXPR == INDEX-VAR | INDEX-VAR INDEX-EXPR
5 INDEX-VAR = | | |
6 IDENTIFIER == LETTER ( LETTER | INTEGER )*
7 CONSTANT z= INTEGER
s INTEGER z= DIGIT*
o LETTER = | | |
I | . |
10 DIGIT = | | | |

Figure 5.4: The grammar for TACO expression in Extended Backus-Naur
form, defining the syntax for tensor expressions, identifiers, constants,
and basic arithmetic expressions. The * symbol denotes Kleene star, indic-
ating zero or more repetitions of the preceding element, while * denotes

Kleene plus, requiring one or more occurrences.

Predicting tensor dimensions:

To accurately predict tensor dimensions for a given program, we combine
insights from a language model (LLM) with static code analysis. Static ana-
lysis is used to predict the left-hand side (LHS) tensor dimensions of an
expression, while the LLM is used to predict dimensions for the right-hand
side (RHS). Static analysis, by analysing the source code, can determine
precisely the dimensions for the LHS tensor, but cannot do the same for

the RHS, so we fall back on heuristics learned by the LLM for the RHS.

Definition 4 (Dimension list). We define a dimension list L, to be a list of
integers (d,, d,, ds, ...) where d, is the dimension for the i*" unique tensor in the
template T. We use L[i] to indicate accessing the i*" element of the dimension

list L, and |L| to indicate the length of the list L. We list the dimensions of
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constants and variables as 0.

For example, the list [1, 2, 4] indicates that the first tensor in the expres-
sion has 1 dimension, the second tensor has 2 dimensions, and the third
tensor has 4 dimensions.

Dimension prediction for RHS tensors using LLM:

Given a set of templatized solutions
{t;, ... o} € T,

generated by the LLM, we compute the dimension list for each candidate

solution, giving a set of lists

Lg* = {L'l'1' s L }

' "T10

. We then filter this list by length and remove any list that has a length less

than the maximum length, giving the filtered set
g={ely | |ll 2|L,| forall L, € L,T)}.

Finally, we return the list that appears most frequently in the filtered set,
ie.,

L, =arg mlax |l € L%].

From here on, we denote this predicted list L, and refer to this as the pre-
dicted dimension list.

Integrating static analysis for LHS tensors. We use static program ana-
lysis to examine the original program AST and predict the LHS dimension.
We apply a dataflow analysis to recover the dimensions in the array ac-
cesses to recover the original dimensionality. For standard array accesses,
e.g., a(i, j), we simply count the number of variables used to index the base
pointer. However, it is common that C programs access multi-dimensional

elements using affine linear expressions on index variables. In such cases,
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we use array delinearization [78] to recover the standard array access form
and predict the dimensionality by counting the number of indexing vari-
ables.

Additionally, some applications use explicit pointer arithmetic to iterate
over arrays. We implement array recovery [32] to retrieve array access
expressions from pointers and then apply delinearization and analyse the
indexing expression. In case the output variable is not accessed through
any memory indexing operation, we assume it is a scalar and predict zero-
dimensionality.

As the left-hand side tensor necessarily appears first in the expression,
we replace L[1] with the predicted dimension for the first tensor from the

static analysis.

Generating the context-free grammar:

Given a dimension list, we wish to generate a grammar that ensures we
only enumerate combinations of indices required to make all possible tensor
expressions that match the predicted dimensions (or, at least, reduce this
space as far as possible without increasing the complexity of the grammar
significantly). For instance, if the dimension listis [0, 1, 3], and at least one
of the predicted solutionsisa = b(i) + c(1i,]j, k), we will modify the
grammar to fix the production rule for the first tensor to restricted to a,
and ensure for any remaining tensor that appear in the expression, the
grammar can enumerate b(i) and c(i,j,k), c(i,k,j), c(j,i,k),
c(k,i,j), c(j,k,i), c(k,j,1). This permits all possible combina-
tions of indexing of the tensors of the predicted dimensions, allowing the
index used for b(1i) to be repeated in any position when indexing c.
Formally, we define this grammar generator as a set of constraints reas-

oning over the predicted dimension list L and the set of templates .7, which,
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if true, indicate that the production rule should be included in the gram-
mar. We use [c]r; to denote that a production r; is included within the
grammar if c is true. i(P) denotes the number of unique index variables in
the set of programs 7. Rules without a constraint automatically appear in

the grammar.

PROGRAM : TENSOR1 EXPR

EXPR x= TENSOR | EXPR OP EXPR

OoP i= | | |
[L[1]=0]TENSOR1
[L[1]=1]1TENSOR1
[L[1] = 2] TENSOR1

[L[2] = 0] TENSOR |
[L[2]=1]TENSOR == | [i(P)>1]
[i(P) > 2] ...

O 00 NN o U1 A W N -

10

11 [L[2] = 2] TENSOR BE | |
[i(P) > 2] ...

12

13 [L[3] = 0] TENSOR u= |

14 [L[3]=1]TENSOR = | [i(P)>1]
[i(P) > 2] ...

15

For every element in the dimension list, we add a new tensorid, a, b,
C .., and index it with the number of index variables that correspond to
the element in the dimension list. For an element i, where L[i] = n, and
for a set of candidate programs where i(7) = m, we add a production rule
for every possible way of choosing n indices from m index variables. We
then remove any production rules that could not be used for parsing any
candidate T € 7, e.q., if no template in  contains a 2-dimensional tensor
indexed with the same index variable twice, we will remove b(i,1). An

example generated template grammar is shown in Figure 5.5.
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PROGRAM

TENSOR1

EXPR TENSOR | CONSTANT | EXPR OP EXPR

TENSOR RE] | | | ...
I |

TENSOR1 EXPR

A W -

CONSTANT
6 OP = | | |

w

Figure 5.5: An example generated template grammar, for the dimension
list [1,2,1,0], with a maximum of 3 unique indices appearing in the can-

didate LLM solutions.

5.4.2 Assigning Probabilities to the Grammar

We now wish to assign a probability to each production rule in the gram-
mar of TACO templates according to their frequency in the left-most deriv-
ations of the candidate solutions.

Given a set of templatized solutions
J € Q(Gtemplate)r

we calculate a weight for each rule r; € R as the number of times that rule
appears in the left-most derivations of the programs. That is,
wlr;] = Z |r;| € D,
Ti€T

where |r;| is the number of times r; appears in the derivation D,.. These
weights reflect the usage frequency of each tensor with specific indices in
the expressions provided by the LLM. Note that, for any production rules
used to replace the tensor nonterminal symbols, e.g., IDTENSOR, which do
not appear in any of the candidate solutions, we assign a default weight of
1. This assignment ensures that these combinations are considered during
the synthesis process with a lower priority.

Using the weights calculated for both operators and tensors, we con-

struct the corresponding probabilistic Context-Free Grammar (pCFG,) by
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normalising the weights into probabilities. For each non-terminal symbol
a, the probability of applying the production rule a — Bis calculated by the

equation in Section 4.4.1.

5.5 Searching the Template Space

We present two algorithms for searching the space of TACO templates.
The first is based on a weighted A* search in the literature [57, 64], which
searches the grammar of TACO templates in a top-down manner. We ex-
tend this algorithm to incorporate a penalty score that accounts for known
syntactic constraints on the target solution. The second is an adapted ver-

sion of A*, which combines bottom-up search with A* heuristics.

5.5.1 Top-Down Weighted A

Algorithm 9 outlines the top-down weighted A* search with penalties. The
search operates over a probabilistic Context-Free Grammar derived from
large language model (LLM) outputs. The A* search in this chapter is differ-
ent from Chapter 4, whose A* doesn't have a penalty function. It maintains
a queue of partial templates, represented as abstract syntax trees, which
we can think of as the frontier of its search. This initially contains just the
start symbol of the grammar. At each iteration, it must determine which of
the partial templates should be further explored, which it does based on
the cost of the path taken to reach those partial templates and an estimate
of the cost required to extend the path all the way to the goal. The goal
is, ultimately to find a complete template that we believe is likely to satisfy

the specification, that is a template can generate a program p, such that

VX.p.(X) = ps(X).
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Thus, when choosing which partial template to further explore, the al-
gorithm chooses the template with the minimum f(x), where x is the par-

tial template, defined as:
f(x) = c(x) + g(x) + Z(x),

where c(x) calculates the accumulated cost from the start node S to current
node x. g(x) is the heuristic estimate of the minimal cost to complete the
expression from x to a goal node (a template we believe is likely to satisfy
the specification), and 2/(x) is a penalty term for expressions that violate
domain-specific syntactic constraints. These are calculated as follows:
The accumulated cost c(x) is calculated as the sum of the costs of the

production rules applied along the path to x:

c(x)= > -log,P[r],

ri€Dy
where D, is the sequence of production rules used to reach the node x and
P[r,;] is the probability of production rule r;. This cost function transforms

probabilities into additive costs, suitable for the A* search.

The heuristic function g(x) estimates the minimal additional cost re-
quired to complete the partial expression at node x to a full expression.

It is defined as:

0 if x € 2%,
g(x) =
-3 e 109, h(x;) otherwise,

where x; are the non-terminal symbols in the partial expression x, and
h(a) is the maximal probability of deriving any terminal string from non-

terminal a. The value h(a) is defined recursively for each non-terminal a:

YaeV, h(a)= ng(P[a — f] x ]_[ h(ﬁ,-)>,

Bi€p
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with the base case h(a) = 1, ifa € Z. This equation represents the
maximal probability of deriving a terminal string from a, accounting for
the probabilities of production rules and the maximal probabilities of its

components.

The penalty function 2(x) this assigns additional costs to expressions
that do not meet specific domain criteria. This function can be formalised

as follows:

> .eaZa(x) if x violates criterion a,
X(x) =

0 otherwise,

There are 5 criteria {a,, ... as} € A, and their penalty scores are defined as
follows (note that an infinite penalty score effectively means these expres-

sions will never be considered):

* Z,,(x) =10, where a, is violated if the grammar includes a constant
expression, the length of x exceeds 3, and x either 1) contains fewer
than 2 tensors with index i or 2) lacks a constant expression. This
penalty biases the search against expressions with multiple tensors

but inadequate index variety or missing constants.

* Z,,(x) = 100, where a, is violated iff x is not the same length as the

length of the dimension list.

* Z,,(x) = oo, where a; is violated if the tensor symbols in x are not
in alphabetical order by order of first appearance. This penalty rule
avoids enumerating templates that are structurally identical, and there-

fore can be instantiated into identical sets of programs.

* Z,,(x) = 00, where a, is violated if x is a complete template (no non-
terminal symbols), and repeatedly applies addition, subtraction, or

division operations on the same tensor.
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* Z,(x) = 00, where a5 is violated if x is a complete template (no non-
terminal symbols), and employs fewer than half of the operations

defined in the grammar.

Algorithm 9 Top-Down Enumerator

1: procedure ENUMERATE(pCFG,)
2: Q < {(0, pCFG,.S)} > Initialize queue with start symbol of grammar
3: while Q = J do

4: (f, x) < Q.pop() > Remove template with minimal f
5: if depth(x) > maxDepth then
6: continue > Skip if maximum depth exceeded
7: end if
8: if x € 2" then > If no non-terminals remain in x
9: S « VALIDATE(X) > Try to instantiate x

10: if S+ 1 then

11: if VERIFY(x.{S}) then

12: return x.{S}

13: end if

14: end if

15: end if

16: for x’. s.t. (x—r> x"A r € pCFG,.R) do D> Iterate over all possible

expansions of x
17: Q<< QU{c(x)+g(x)+Z(x), x}
18: end for
19: end while
20: return Failure > Return Failure if no valid expression is found

21: end procedure

Search. The search is shown in Algorithm 9. The algorithm keeps a queue
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of expressions in a queue, which you can consider to be the frontier of the
search. At each iteration, it selects the expressions with the lowest total
score f from the queue. If the expression is a complete expression, i.e., it
contains only terminal symbols from the grammar, we then send this to
the validation procedure described in Section 5.6. If the expression is a
partial expression, the leftmost non-terminal of the expression is expan-
ded according to all applicable production rules in the grammar, creating
a new template for each production rule. These new expressions are all
added to the queue and the process is repeated.

We set a depth limit of 6, and if any expression exceeds this depth, it is
discarded. We calculate depth as the depth of the maximum child in the
abstract syntax tree, excluding index expressions, e.g., b(i) and c(1,])
are both expressions of depth 1, and b (i) + c(i,j) is an expression of

depth 2.

5.5.2 Bottom-Up Weighted A*

The algorithm presented in the previous section takes a top-down approach
to enumerating through the search space. This has advantages over bottom-
up search, namely that it is known to find longer programs faster than
bottom-up search, which is biased towards shorter programs. Neverthe-
less, recent work has shown that guided bottom-up search can produce
promising results [13]. To that end, we develop a new A* inspired bottom-
up search algorithm, which we term bottom-up A*. The bottom-up search,
shown in Algorithm 10 constructs expressions incrementally by starting
with basic tensors and systematically combining them using operators, fol-
lowing a probabilistic context-free grammar. Again, the algorithm main-
tains a queue of expressions, and uses the same combination of cost, es-

timated cost to reach a goal state and the penalty function to determine
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which expression to expand first.

One key difference in the bottom-up search is the way we generate

the template grammar. For the bottom-up search, where the production

rules only permit extending an expression by adding an operator and a

new tensor to the end, effectively forcing the algorithm to enumerate pro-

grams shortest first. The grammar generator, given a predicted dimension

list L, and a function i(") which calculates the number of unique indices in

T,

A W N -

O 00 N o u»n

10

11

12
13

14

is shown below:

PROGRAM == TENSOR1 EXPR
EXPR = TENSOR2 TAIL1

TAIL1 = | [IL| >2] OP TENSOR3 TAIL2
TAIL2 = | [IL] >3] OP TENSOR4 TAIL3
oP = | | I

[L[1] = 0] TENSOR1 ==

[L[1]=1]TENSOR1 ==

[L[1] = 2] TENSOR1 ==

[L[2] = 0] TENSOR2 = |

[L[2] = 1] TENSOR2 == | [i(P)> 1] |
[i(P) > 2]

[L[2] = 2] TENSOR2 = | |
[i(P) > 2] ...

[L[3] = 0] TENSOR3 |

[L[3] = 1]1TENSOR3 == | [i(P)> 1]
[i(P) > 2] l...

An example of generated grammar is shown in Figure 5.6.

Weights and probabilities over the grammar are then calculated as de-

scribed in Section 5.4.2.
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1 PROGRAM = TENSOR1 EXPR

2 TENSOR1 =

3 EXPR = 1DTENSOR TAIL1

4 TAIL1 = | OP 2DTENSOR TAIL2
5 TAIL2 = | OP 1DTENSOR

6 2DTENSOR = | |
7 1DTENSOR = |

Figure 5.6: An example generated template grammar, for the dimension
list [0, 1, 2, 1], with a maximum of 3 unique indices appearing in the candid-
ate LLM solutions. The rules for each tensor index expression include all

possible permutations of indices. The symbol € denotes the empty string.

The search algorithm maintains a queue of partial programs, as with
the top-down search, which is initialised with the start symbol from the
grammar. At each iteration, the program with the minimum cost function,
as before, is popped from the queue, expanded, and all the resulting pro-
grams are added to the queue. The total cost function f(x) for each partial

expression x, is again defined as:

f(x) = c(x) + g(x) + Z(x),

where c(x) is calculated as before. In the bottom-up search, we use a sim-
plified estimate of the cost to complete the program, g(x), which is defined

as:
L]

g(x) = > m(L[i +1]),
i=k
where k is the current number of tensors in x, L is the predicted dimen-
sion list, and m(d) is the minimal cost to add a tensor of dimension d. The
minimal cost m(d) is computed as follows, where Tensors(d) is the list of
tensors in the grammar of dimension d, and £[t] is the maximum prob-

ability of any production rule in the grammar which adds the tensor of
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dimension d:

m(d) = - log, (temgéw) [P’[t]).

The penalty function is calculated as before, but with the criteria {b,, b,} € B

defined as:

* Zp,(x) = 100, where b, is violated if the tensor symbols in x are not

in alphabetical order by order of first appearance.

* Z,(x) = co, where b, is violated if x contains at least as many tensors
as predicted by the dimension list, and it uses fewer than half the

operations available in the grammar, and 0 otherwise.

The bottom-up search uses fewer penalty criteria than the top-down
search because the construction of the grammar encapsulates a number
of these criteria already (for instance, the tensors are enumerated by pre-

dicted dimension list order).

The main difference between the top-down and the bottom-up search
is that the bottom-up grammar is generated in a way that, at each inter-
mediate step, a complete program can be inferred from the partial pro-
gram and checked against the specification. Every time an expression is
dequeued from the queue, if the expression contains a tail nonterminal
symbol, e.g., TAIL1, TAIL1; we can remove the tail nonterminal symbol to
give a complete template (i.e., a template that contains no non-terminal
symbols). We can then return this template to the template validator. If it
fails validation, we will re-append the nonterminal symbol to the end of the
expression and generate new expressions by expanding the non-terminal
using all applicable production rules. The new expressions are added into

the queue.



5.5. Searching the Template Space 99

Algorithm 10 Bottom-Up Enumerator
1. procedure ENUMERATE(pCFG,, L)

N

Q < {(0, pCFG,.S)} D> Priority queue initialized with start node
3: while Q # J do

4: (f, x) < Q.pop() > Remove template with minimal f
5: if [tensors(x)| = |L| then D> If number of tensors in x is the
predicted number
6: if x ¢ 2* then
7: X «— RemoveTail(x) > Remove any tail nonterminal
symbol
8: end if
9: S « VALIDATE(X) > Try to instantiate x
10: if S+ L then
11: if VERIFY(x.{S}) then
12: return x.{S} > Return instantiated template
13: end if
14: end if
15: end if
16: forx. st. (x> X'A re pCFG..R) do D> Iterate over all possible
expansions of x
17: Q— QU{c(x)+g(x)+2Z(x"), x’}
18: end for

19: end while
20: return Failure > Return Failure if no valid expression is found

21: end procedure
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5.6 Validation

Once the synthesiser produces a complete template t, we wish to check

whether it can generate a program p, that satisfies the requirement
VXps(X) = p(X).
Since checking this universally quantified formula is expensive, we first

generate a set of tests in the form of input-output examples. This set of

examples (I, O) is a list of input-output pairs where
I={X; > Vq 0 X, > V)
is @ map that binds the T input arguments
X=X .0 X,)

to concrete values (v, ...v,) randomly generated and O = (o4, ..., 0,) is the
corresponding output produced when we execute p, on the elements from
L

The TACO templates generated during the synthesis phase contain sym-
bolic placeholders for tensors and constants. To validate a candidate 7, we
build a set

S=(5)..sSm)

of substitutions s — x that map the symbolic symbols s in tau to input
arguments x. We iterate through all possible permutations of S, where
tensor symbols are mapped to concrete tensor inputs, and constants are

mapped to a set of constants
C=(¢q e Cpp)

containing the constant values present in the source code of p,. We can

then generate a concrete program

p: = T{S},
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and execute p, on the input-output examples in (I, 0). If any instantiated
concrete program satisfies all the input-output examples, we return this
to the next stage of verification. We use S to assign concrete values to
TACO symbols and run P; to check its output. When building S, we rule out
invalid substitutions based on the type of arguments and TACO symbols.
More specifically, we discard substitutions that try to bind tensor symbols
with dimension > 1 to scalars and vice versa. If the validator succeeds, it
returns the valid substitution S, if not it returns L to indicate there was no

valid substitution.

We explore all possible valid substitutions until we find a substitution s*
that satisfies ¢. This validation process returns a tuple {P;, s*) that is given

as input to the verification phase.

Figure 5.7 shows a subset of the substitutions set S given the program
in Benchmark 8 and the TACO candidate P; produced by the synthesiser,
a(i) = b(i,j) * c(j). Each substitution binds a symbol in the right-
hand side of Py, i.e., b and c to one of the inputs of function. The sub-
stitutions with a x mark next to it are invalid, since they contain unsound
bindings. For example, substitution S; binds ¢, a 1-dimensional tensor to
N, which is a scalar. Such substitutions are discarded and the valid ones
are tested to run the program until we find one in which P; satisfies the
specification. In this example, the correct substitution is Sg, which binds b

and c to arguments Mat1 and Mat2 respectively.
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S;: (b~ Matl, c— Matl)
S, : (b Mat2,c —» Result)

S1:{(b— Matl, c— Matl)
S3:{b—Matl,c—N)

S, : (b Mat2, c — Result)
S4:{b—N,c— Matl) N

S5 : (b Matl, c— Mat2)
S5 : (b~ Matl, c — Mat2)
Sg:(b—>Mat2,c—N)

Sm: {b— Result,c— Mat2)

Sm : (b~ Result, c — Mat2)

S5:{b+—>Matl,c— Mat2) v

Figure 5.7: A set of possible substitutions for the TACO program a(i) =
b(i,j) * c(j) andtheinputs from the legacy program in Benchmark 8.
We discard invalid substitutions and try the valid ones until we find one

that satisfies the specification.
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5.7 Verifier

We verify the correctness of a synthesised TACO program using bounded
model checking. We compile both the original C and the TACO program to
a common language within the MLIR compiler infrastructure [56]. Given
a TACO program T and a substitution S returned by the validator, we cre-
ate NumPy code based on the indexing expressions of T and replace its
variables for the concrete values specified in s*. If the model checker fails
to verify equivalence with the tuple (T, s*), we return to the validation step
and keep exploring different substitutions until we find one that satisfies
the specification and passes verification. We then use the JAX compiler [18]
to lower the NumPy code to MLIR.

From the MLIR files, we automatically generate C programs that create
non-deterministic inputs, execute the original C and TACO code on copies
of those inputs, and assert that the outputs are identical. We give this
C program as input to CBMC [54], a bounded model checker for C, that
verifies said assertion holds for all possible inputs up to a certain bound.

Floating-point equivalence is both challenging to verify and, in many
cases, undesirable. For instance, many compiler optimisations simply do
not preserve floating-point optimisations in order to achieve runtime speed-
ups. For this reason, we extend CBMC to support rational datatypes, and

verify equivalence using rational datatypes.

5.8 Evaluation

To evaluate STAGG and its various components, we compare its perform-
ance against several established techniques on a diverse suite of queries.

The query set includes 10 artificial examples and 67 real-world problems
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(61 derived from codebases reported in the literature [70] and 6 from the

C++ based inference code of Llama [68].)

STAGG is implemented using an extended version of CBMC 6.3.1 with
CVC5 version 1.0.5 as the underlying SMT solver. To generate initial can-
didate solutions, we use GPT-4 with the temperature set to 1.0. A timeout
of 60 minutes is applied to each query. All experiments are conducted on a
system equipped with an 11™ Gen Intel Core i5-1135G7 processor, 16 GiB
of RAM, and running Ubuntu 22.04.5 LTS. Additional configuration details,
including grammar refinements and penalty modifications, are provided

in the subsequent sections.

We compare the following approaches: (STAGG "°) our approach, us-
ing the top-down A+ search described in Section 5.5.1; (STAGG &Y) our ap-
proach, using the bottom-up search described in Section 5.5.2; (C2TACO)
An enumerative synthesis tool for lifting C to TACO code [70]. We compare
to C2TACO both with and without the domain-specific heuristics; (Tens-
piler) An enumerative synthesis tool based on the verified lifting frame-
work [93]; (LLM only) A baseline approach that employs a large language
model (GPT-4) to directly generate candidate solutions without additional
heuristic-driven refinement or search. In addition, we perform ablation
studies to evaluate the contribution of several components of STAGG. Namely,
the grammar refinement; the probabilities of the grammar; and the pen-

alty functions.
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5.8.1 Performance Comparison of STAGG to the State-of-

the-Art Solvers.

STAGG'®

10004 STAGG®

—— C2TACO

------ C2TACO.NoHeuristics
Tenspiler

100 4

10 1

Time (s)

0.1

0 10 20 30 40 50 60
Number of Benchmarks Solved

Figure 5.8: Cactus plot showing the number of benchmarks solved (x-axis)

vs. time (y-axis, logarithmic) on the 67 real-world benchmarks. Each line

corresponds to a different synthesiser, and the point at which each line

indicates how many benchmarks the synthesiser solved before the time.

Figure 5.8 depicts the cumulative time each method takes over the 67 real-
world benchmarks, and Figure 5.9 shows the success rate of different tech-
niques. We compare STAGG to C2TACO on the full set of 77 benchmarks
in Table 5.1. STAGG'® solves 76 benchmarks, compared to C2TACO which
solves 67. STAGG™ solves all the benchmarks that C2TACO can solve, with
an average solving time of 3.19s, compared to C2TACO's 21.15s. STAGG®Y
solves 73 benchmarks, and solves 66/67 of the benchmarks that C2TACO
solves, with an average solving time of 2.11s on the mutually solved bench-
marks. C2TACO without the domain heuristics enabled is significantly slower.

We are only able to run Tenspiler on the 67 real-world benchmarks,
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STAGG™® 99%
STAGG®" 94%

C2TACO

C2TACO.NoHeuristics

LLM

Tenspiler

0 20 40 60 50 100
Benchmarks Solved (%)
Figure 5.9: Success rates of different approaches on the set of 67 real-

world benchmarks.

where it solves 52. STAGG'? solves all 52 benchmarks that Tenspiler can
solve, with an average time of 3.45s compared to Tenspiler’s average time
of 4.56s. STAGG®? solves only 50/52 of the benchmarks that Tenspiler can
solve, but with an average time of 2.03s. This comprehensively answers
RQ1: STAGG outperforms the state-of-the-art solvers, both in terms of cov-

erage and speed.

5.8.2 Performance Comparison of Top-Down vs Bottom-

Up Search.

Our results show that, while STAGG'? solves more benchmarks than STAGG#?,
STAGG*? is faster on commonly solved benchmarks (for queries solved by
both, STAGG?Y achieves a lower average solving time (98.81 seconds) com-
pared to STAGG™ (108.83 seconds)), and it enumerates fewer candidates.
It has one big disadvantage though, which is that it can only expand expres-
sions by appending to the previous expression, rather than by expanding
nodes on the left-hand side of the AST. In particular, this means it cannot
solve benchmarks that require expressions with more balanced Abstract

Syntax Trees or benchmarks that contain parentheses.
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Table 5.1: Comparison of benchmark-solving performance across differ-

ent methods: The table reports the number of benchmarks solved (#), av-

erage solving time (time in seconds), and attempts across various bench-

marks. The benchmarks are categorised into real-world benchmarks (67

in total), real-world + artificial benchmarks (77 in total), benchmarks solved

by C2TACO, and benchmarks solved by Tenspiler. STAGG ® and STAGG &Y

demonstrate superior solving capabilities, solving more benchmarks over-

all compared to C2TACO and Tenspiler, with STAGG 2 achieving the fastest

solving times for benchmarks solvable by C2TACO and Tenspiler. The res-

ults highlight the efficacy of STAGG over existing methods.

Real-World | Real-World + Artificial Solved Solved
(67) (77) by C2TACO | by Tenspiler
Methods # time | # time attempts| # time | # time
STAGG™ 66 121.88 |76 106.13 4455 |67 319 |52 345
STAGG*®Y 63 113.86 | 73 98.81 3562 |66 211 |50 2.03
LLM 24 261 |34 259 1.62 31 257 |20 272
C2TACO 59 2257 |67 21.15 1845 |67 21.15 |50 23.69
C2TACO.NoHeuristics | 59 43.08 | 67 49.41 48.81 67 49.41 |50 43.76
Tenspiler 52 4.56 52 4.56
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Table 5.2: Impact of penalty rules on performance over 77 benchmarks
(real-world + artificial). The table compares the number of benchmarks
solved (#), the percentage of benchmarks solved (%), and the average solv-
ing time (time in seconds) for various configurations of STAGG. Removing
penalty rules (e.g., Drop(A), Drop(B)) reduces the number of solved bench-
marks and influences solving times. While STAGG "® and STAGG &Y achieve
high solving rates with the full penalty rules, dropping specific penalties
often results in faster solving times but at the cost of reduced solving cap-

ability, as it failed solving complex benchmarks.

Real-World + Artificial (77)
Methods # % time
STAGG™ 76 98.70% 106.13
STAGG™.Drop(A) | 71 92.21% 7.21
STAGG™.Drop(a1) | 72 93.51% 79.24
STAGG™.Drop(a2) | 75 97.40% 91.66
STAGG™.Drop(a3) | 72 93.51% 21.01
STAGG™.Drop(a4) | 75 97.40% 90.58
STAGG™.Drop(a5) | 75 97.40% 83.34
STAGG?Y 73 94.81% 98.81
STAGG®'.Drop(B) | 70 90.91% 68.18
STAGG®Y.Drop(b1) | 71 92.21% 48.95
STAGG®Y.Drop(b2) | 70 90.91% 68.75
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Table 5.3: Performance comparison of different methods and grammar
configurations over 77 benchmarks (real-world + artificial). The table
shows the number of benchmarks solved (#), the percentage of bench-
marks solved (%), the average solving time (time in seconds), and the num-
ber of synthesis attempts. STAGG ™ and STAGG &' outperform C2TACO
variants in solving more benchmarks. Variations of STAGG demonstrate
the impact of grammar refinement, where dropping penalty rules (Drop(A),
Drop(B)) or using alternative configurations (e.g., EqualProbability, LLM-

Grammar) affects the solving capability, time, and attempts.

Real-World + Artificial (77)

Methods # % time attempts
STAGG'? 76 98.70% 106.13  44.55
STAGG™.Drop(A) 71 9221% 7.21 13.65

STAGG'®.EqualProbability | 73 94.81% 28.14 37.27
STAGG™ LLMGrammar 52 67.53% 3.77 5.25

STAGG'®.FullGrammar 69 89.61% 91.15 874.29
STAGG®EY 73 94.81% 98.81 35.62
STAGGB”.Drop(B) 70 90.91% 68.18 10.07
STAGGBU.EquaIPrObability 74 96.10% 180.31 62.78
STAGGEY LLMGrammar 52 67.53% 2.74 2.60

STAGGEY FullGrammar 68 88.31% 96.57 259.35
LLM 34 44.16% 2.59 1.62

C2TACO 67 87.01% 21.15 18.45

C2TACO.NoHeuristics 67 87.01% 49.41 48.81
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e =95%
STAGG®" EqualProbability 96%

STAGGBU .FullGrammar 1 88%
STAGG"" . LLMGrammar 1 68%
STAGG™® 99%
STAGG'°.EqualProbability =%
STAGG " FullGrammar 1 90%

STAGG'".LLMGrammar — 68%

0 20 40 60 80 100

Benchmarks Solved (%)

Figure 5.10: Impact of different grammar configurations in STAGG on suc-

cess rates across all 77 benchmarks.

5.8.3 Contribution of the Penalty Functions.

Table 5.2 shows the decline in performance for both STAGG "® and STAGG
BV approaches when individual penalty rules are removed. As each penalty
rule is dropped, the number of queries solved decreases, highlighting the

importance of these rules in achieving high query-solving efficiency.

5.8.4 Contribution of Grammar Refinement and Probab-
ilities.

Figure 5.10, 5.11 and Table 5.3 show the performance of difference con-
figurations of STAGG: EqualProbability uses the refined grammar but
replaces all probabilities in the generated pCFG with equal probabilities;
FullGrammar uses the full TACO grammar in Figure 5.4 with equal prob-
abilities; LLMGrammar uses the full TACO grammar in Figure 5.4 with prob-
abilities learned from the LLM responses. All these configurations use the
penalty functions. Thus, in order to compare the contribution of the gram-

mar refinement, we can compare the performance of LLMGrammar, which
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Figure 5.11: The performance of difference configurations of STAGG on all

77 benchmarks.

uses learned probabilities but no refinement, to STAGG. Dropping the re-
finement here, results in us solving 31% fewer benchmarks. If we com-
pare FullGrammar to EqualProbability, we can see that grammar re-
finement has less impact when learned probabilities are not used, but still
results in a significant number of benchmarks being dropped.

In order to compare the contribution of the probabilities, we can com-
pare the performance of EqualProbability to STAGG, where we note
that using equal probabilities on the refined grammar results in an in-
crease in the number of benchmarks solved for STAGG'®, and an increase
in solving speed for STAGG®?Y, although neither is as impactful as the gram-
mar refinement. In fact, the comparison between FullGrammar and LL-
MGrammar demonstrates that learned probabilities can have a negative
impact if they are used in a grammar that is not general enough. Thus,
our answer to RQ4 and RQ5 is that grammar refinement in combination

with probabilities has a biggerimpact on performance than either compon-
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ent part, but the refinement alone is more powerful than the probabilities

alone.

5.9 Conclusions

This chapter presented STAGG, a novel approach that combines LLMs and
program synthesis to lift legacy tensor code to DSLs. We use a set of
LLM responses to infer a probabilistic context-free grammar that drives an
enumerative search over the space of possible solutions. Our technique
successfully lifts 99% of a large suite of benchmarks with an average lift-
ing time of 3.19 seconds, outperforming existing state-of-the-art lifters in
terms of coverage and synthesis time. Additionally, STAGG is able to auto-
matically learn a search space, and it does not rely on any pre-defined heur-
istics. Future work will focus on expanding our technique to application

domains other than tensor computation.
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Related Work

6.1 SyGusS Solvers

Many state-of-the-art SyGusS solvers are based on enumerative synthesis
[6,95,57,42] and use clever heuristics to improve the search speed. Closest
to our work in Chapter 4 and Chapter 5 is Euphony [57], which accelerates
enumerative syntax-guided synthesis by biasing the search towards likely
programs using a learned probabilistic model. Specifically, it employs an
A* search algorithm that enumerates candidate programs in order of de-
creasing probability, effectively treating the negative log probability of a
program as the search cost. The search is guided by a probabilistic higher-
order grammar [17] trained on previously solved synthesis benchmarks,
so program derivations are ranked by their learned likelihood rather than
assumed uniform. This approach significantly prunes the search space
by prioritising derivations that mirror patterns from the training solutions,
leading to faster discovery of correct programs. However, Euphony’ s ef-
fectiveness hinges on the availability of a library of known solutions to train
its model, and obtaining such domain-specific training data can be chal-

lenging. In contrast, newer methods avoid this requirement by guiding

113
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the search with pre-trained large language models (LLMs), which provide
probabilistic grammar guidance without the need for custom training cor-
pora. Weighted grammars have also been used to guide programming
by example [73], and to encode syntactic objectives [40], for instance, for

optimising the length of solutions.

The SyGuS framework itself [3] formalises synthesis as the task of find-
ing a program from a user-specified grammar that satisfies a logical spe-
cification. Almost all synthesis algorithms use oracles to give feedback to
the synthesis process [47, 46]. The majority of these use semantic oracles,
which give feedback on the meaning of the program. For example, the
counterexample-guided inductive synthesis (CEGIS) paradigm [101]. CE-
GIS frames synthesis as an iterative loop between a learner and a verifier.
The learner proposes a candidate program consistent with the examples
seen so far, while the verifier checks the candidate against the full specific-
ation. If the candidate is incorrect, the verifier returns a counterexample
input that exposes the failure. This counterexample is then added to the
learner’ s example set, refining the next candidate. The loop continues
until either a correct program is found or the search space is exhausted.
This iterative loop underpins many later solvers. A refinement of the ap-
proach, CEGIS(7) [2], integrates deductive reasoning from theory solvers
directly into the loop, enabling the synthesiser to solve for constants or
prune infeasible candidates within background theories. Similarly, conflict-
driven learning techniques such as Feng et al.[31] strengthen the search
by learning constraints from failed partial programs, thereby eliminating
entire regions of the search space. EUSolver [6] pioneered a divide-and-
conquer approach, decomposing problems into smaller sub-expressions
and unifying them into complete solutions. Reynolds et al. [96] intro-

duce the first program synthesis engine, which takes a different path by
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embedding synthesis directly inside an SMT solver. Candidate functions
are represented as algebraic datatypes, and the solver explores them via
counterexample-guided quantifier instantiation (CEGQI), which systemat-
ically proposes instantiations for the unknown function and refines them
with counterexamples. This “synthesis in the solver” approach leverages
SMT machinery for pruning and theory reasoning, and has proven highly
competitive across SyGuS competition tracks. DryadSynth [42] exemplifies
a more recent trend of hybrid solvers that combine deductive reasoning
with concurrent enumerative search. It decomposes specifications into
subproblems and applies lightweight logical inference to rule out infeas-
ible branches before attempting enumeration. Multiple threads then ex-
plore different parts of the search space in parallel, exchanging deductions
to accelerate convergence. This cooperative model scales to domains such
as strings and bit-vectors where pure enumeration or deduction alone is

insufficient.

Machine learning techniques have been deployed to improve the effi-
ciency of enumerative synthesis. Parsert et al. [85] use reinforcement
learning with Monte Carlo tree search to guide grammar-based enumera-
tion. A policy network selects grammar rules, while a value network estim-
ates whether a partial program is likely to lead to a solution, and both are
trained using automatically generated SyGuS benchmarks. Chen et al.[26]
instead integrate reinforcement learning directly into a deductive synthes-
iser: partial programs are checked with an SMT solver, and infeasible can-
didates trigger counterexample-guided policy updates, so the policy im-
proves online during synthesis. Bunel et al., [22] address the program ali-
asing problem in neural synthesis by combining a grammar-constrained
decoder with policy-gradient training, rewarding the model for any correct

program that satisfies the specification rather than only reproducing ref-
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erence solutions. Morton et al., [74] propose grammar filtering, where a
neural classifier predicts which production rules are relevant for the given
specification, allowing the solver to discard irrelevant rules and focus on a
much smaller, problem-specificgrammar. Together, these methods demon-
strate how learned heuristics can be used either to prioritise expansions,
to learn from deductive counterexamples, or to prune the grammar it-
self before search begins. Balog et al. [10] synthesised array manipu-
lation programs from I/O examples using a feedforward neural network
(FNN) to build a probabilistic distribution over the target language. Dur-
ing the search, the synthesis algorithm expands partial programs based
on the probabilities predicted by the FNN for the given I/0 specification.
Neural-guided synthesis has also been applied to solve string manipula-
tion tasks by [79, 99], inductive logic programming [99], dataframe [15]
and tensor [98, 76] processing, and code transpilation [71] using distinct
models. SketchAdapt [77] uses a model to produce a program sketch as a

starting point and completes said sketch through symbolic enumeration.

6.2 Large Language Models

LLMs, such as GPT-4 [81] and CoPilot [36], have demonstrated impress-
ive capabilities in generating code and assisting in diverse programming
tasks with natural language and input-output specifications [20, 21]. In [9],
it is shown that performance scales log-linearly with model size, improves
with fine-tuning, and can be further enhanced by interactive natural lan-
guage feedback, though models still struggle with semantic grounding
and execution understanding. Jigsaw [44] augments black-box LLMs like
GPT-3 and Codex with program analysis and synthesis modules, combin-

ing natural language intent and I/0O examples to synthesise Pandas code.
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It corrects common LLM errors (e.g., variable references, argument mis-
matches, semantic mistakes) via AST-to-AST transformations and learns
from user feedback, leading to significantly higher accuracy than raw LLM
outputs. Nevertheless, their tendency to produce hallucinations, factu-
ally incorrect, or contextually inappropriate outputs poses challenges to

users [88, 97, 871.

SYMLLM [50] is a framework that recovers from LLM synthesis failures
by decomposing incorrect programs into prefix and suffix subprograms,
then recursively solving the resulting subproblems. CodeARC [108] intro-
duces an interactive benchmark where LLM agents query hidden target
functions with inputs, invoke a differential testing oracle, and iteratively
refine synthesised code. Closest to our work in Chapter 4 is Kamath et al.,
who use LLMs to synthesise loop invariants directly [48]. Our work also
demonstrates that LLMs are surprisingly good at synthesising invariants,
but additionally addresses how to use LLMs in other formal synthesis prob-
lems and when they cannot find the solution in one shot. LEMUR [111] in-
troduces a hybrid framework that combines the high-level reasoning abil-
ity of LLMs with the precise low-level reasoning of automated verifiers. In
this approach, LLMs propose candidate invariants and intermediate proof
goals, while automated reasoners validate or repair them within a sound
proof calculus. Clover [103] presents a complementary paradigm of closed-
loop verifiable code generation, in which LLMs generate code together
with natural-language documents and formal annotations. Jha et al. [45]
and Song et al. [102] integrate an LLM into a CEGIS loop, but unlike our
work, the entire synthesis phase is carried out by the LLM, which prevents
them from leveraging the combined strengths of enumerative solving and
LLMs. Wang et al. [106] propose grammar prompting, where an LLM uses

a BNF grammar to enforce syntactic constraints during generation, en-
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abling highly structured languages such as DSLs to be generated with min-
imal data. Xander [91] is a neurosymbolic architecture for SQL generation
that explores multiple candidate queries using best-first search, applies
symbolic checks on partial and complete queries, and repairs them when
needed. Similarly, Tao et al. [105] address trust concerns in LLM-generated
code by restricting the search space to predefined “safe” BNF grammars,
avoiding programs with risky vulnerabilities. Another work close to our
work in Chapter 4 is HYSYNTH [13]. HYSYNTH first samples candidate pro-
grams from an LLM and extracts their production statistics to build a prob-
abilistic context-free grammar (pCFG). This pCFG is then used to weight
rules in a bottom-up enumerative synthesiser, effectively biasing search
toward components that the LLM deems relevant, thereby reducing the

search space and speeding up synthesis.

Pre-trained LLMs have also been used for code lifting, which will be
introduced in Chapter 5. LLMLIft [16] applies LLMs directly for verified lift-
ing, leveraging GPT-4 [81] to guess candidate solutions and loop invari-
ants to prove equivalence, with feedback given to the LLM to correct mis-
takes. This approach is highly effective but depends on the LLM’ s abil-
ity to repair itself from feedback, which is not always trivial in complex
domains [80]. Oxidizer [113] is a modular translation framework that ap-
plies feature mapping rules to guide LLMs through subtle cross-language
differences and performs type-compatibility checks before validating 1/0
equivalence. AlphaTrans [43] addresses the complexity of migrating from
one language to another, which is infeasible with a naive “feed it to GPT-4"
approach due to context limits and error accumulation. Pan et al. [84] sys-
tematically evaluate general-purpose and code-focused LLMs across many
language pairs, introducing a taxonomy of translation bugs and showing

that most errors arise from syntactic or semantic mismatches or from viol-
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ating target-language constraints. These findings suggest that while LLMs
hold promise for automated translation, reliable results require comple-

mentary techniques such as program analysis or prompt engineering.

Close to our work in Chapter 5 is C2TACO [70]. C2TACO is a synthesis
tool that generates TACO code from I/0 examples. Itimplements a bottom-
up enumerative algorithm, and it uses code analysis to restrict the search
space of programs. mlirSynth [19] also has a similar approach, but it lifts
tensor programs across different MLIR dialects. In both methods, correct-
ness is asserted using only I/0 testing, while our work in Chapter 5 per-
forms bounded model checking to verify that the lifted programs are equi-
valent to their original counterpart. A different synthesis method was used
in Tenspiler [93], which employs symbolic synthesis to generate programs
in six different tensor DSLs. Tenspiler builds verification conditions and
loop invariants to prove that the lifted program is equivalent to the original
one. Unlike our work, which learns how to explore the search space in a
fully automated way, all those techniques require hard-coded heuristics to

make the search space tractable.

Another approach to lift code is API matching, in which source code is
replaced by optimised library routines to improve performance. Examples
in the tensor domain include KernelFaRer [28], which focuses on general
matrix multiplication (GEMM), and ATC [72], which targets both GEMM and
convolutions. SpEQ [55] introduces a method of translating sparse linear
algebra codes to optimised targets using equality saturation applied to
LLVM IR. However, these approaches are often tailored to specific APIs
and are not portable. Our work in Chapter 5 leverages the great learn-
ing capabilities of Large Language Models to infer the search space, which
makes our technique extensible to different targets and to more unrestric-

ted back-ends such as DSLs.
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6.3 Automatic Prompt Generation

Manual prompting refers to human-designed prompt strategies. For ex-
ample, Chain-of-Thought prompting [109] or Knowledge prompting [67]
are clever prompting strategies designed by humans that often improve
the performance of LLMs across reasoning tasks. In Chapter 3, we dif-
fer from manual prompting in that we take these strategies as inputs and

learn to select the best combination of them for a given task.

Continuous and discrete prompting both refer to automated prompt-
ing techniques. Continuous prompting techniques, like Prefix-Tuning [59],
aim to learn domain and task-specific vectors that are then used to guide
LLMs to better performance. These vectors can usually not be represented
by a sequence of tokens, so continuous prompting is not often considered

interpretable.

In contrast, discrete prompting techniques optimise the text input to
the LLM. Some discrete prompting techniques, like PRewrite [53], RLPrompt
[29], TEMPERA [114] and GRIPS [90], take a starting prompt and search
for a new version of the prompt that outperforms the original. To un-
derstand the starting prompt, these techniques usually use a second lan-
guage model in the loop. Other discrete prompting techniques, like Auto-
Prompt [100], Liu et al. [66] and Lu et al. [69], generate prompts using tem-
plates. AutoPrompt uses LLM gradients to learn task-specific keywords
that are then included in the prompt. Liu et al. select examples to include
in a few-shot prompt template. In a similar vein, Lu et al. optimise the

order of examples.

Ourworkin Chapter 3is most like the latter category of discrete prompts.
We rely on templates and existing prompts to offer inexpensive prompt op-

timisation.
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Another related work in Chapter 3 is “portfolio solver”, which refers to
any algorithm that deploys multiple solvers or solver configurations on a
given problem. Wintersteiger et al. [110] uses the concurrent portfolio
solver for a given SMT formula, run multiple Z3 instances configured with
different heuristics in parallel, sharing learned clauses so that the fastest
solver can terminate the search early. MedleySolver [89] predicts a se-
quence of SMT solvers for a given input query to deploy based on minim-
ising Par-2 score (a proxy for time with a penalty for timeouts). PAK-UCB
[41] frames prompt-aware model selection as a contextual bandit problem,
which learns prompt-dependent performance using kernel-based predict-
ors, with random Fourier features for efficiency. OPTS [7] chooses a prompt
design strategy via a bandit mechanism to improve downstream perform-

ance.






Chapter 7

Conclusions

Program synthesis sits at the intersection of programming languages and
artificial intelligence, aiming to automatically generate correct programs
from high-level specifications. This thesis has explored a hybrid approach
that bridges formal synthesis and Large Language Models (LLMs), seeking
to combine the scalability and adaptability of LLMs with the formal guar-

antees of program synthesis.

7.1 Summary of Contributions

This thesis makes four key contributions that advance the state-of-the-art

in program synthesis:

* CYANEA, the online solver selection:

We developed a contextual multi-armed bandit framework that dy-
namically selects between LLM—prompt pairs and symbolic solvers
based on features of the synthesis task. CYANEA consistently outper-
formed the best individual solver in terms of success rate and com-

putational efficiency.

123
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* LLM-guided probabilistic grammars: We proposed two comple-
mentary techniques, pCFG-synth and iLLM-synth, that mine probabil-
istic guidance from incorrect LLM outputs and integrate this informa-
tion into enumerative search. While pCFG-synth achieved the highest
overall success rate (solving 80.1% of SyGuS benchmarks), iLLM-synth
demonstrated the feasibility of interactive prompting and dynamic

grammar refinement during search.

+ STAGG: guided tensor lifting: We applied the hybrid synthesis frame
work to lift low-level tensor kernels into high-level DSLs. STAGG com-
bined LLM-driven heuristics with weighted A* search, achieving 99%
correctness on real-world tasks and up to a 12x speedup over previ-

ous state-of-the-art methods.

7.2 Implications and Impact

This thesis demonstrates that LLMs can be effectively integrated into pro-
gram synthesis pipelines as heuristic engines rather than standalone solv-
ers. By transforming incorrect or partial LLM outputs into actionable prob-
abilistic grammars, we achieved significant improvements in both scalabil-
ity and correctness compared to purely symbolic or purely statistical meth-
ods. The proposed frameworks are model-agnostic, ensuring compatibil-

ity with future LLM architectures without requiring retraining.

Furthermore, the success of STAGG in lifting tensor kernels highlights
the potential of this approach for real-world software engineering tasks,

including code transpilation, optimisation, and DSL migration.
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7.3 Limitations and Future Work

While the hybrid frameworks presented in this thesis demonstrate clear

benefits, several limitations remain:

* Benchmark diversity:

The evaluation primarily relied on SyGuS benchmarks and dense tensor
lifting tasks, which, while standard in the field, may not fully capture
the diversity of real-world synthesis challenges. Future work should

expand the evaluation to broader domains.

* LLM prompt engineering:

Although the frameworks leverage pre-trained LLMs, prompt engin-
eering in CYANEA is limited to selecting from a fixed, manually con-
structed set of prompt styles. While this selection improves robust-
ness over single-prompt baselines, it still relies on hard-coded tem-
plates. Future work could explore automatic construction and con-

tinual refinement of the prompt library.

* Model bias and hallucination:

While the frameworks exploit the strengths of LLMs, they also inherit
model biases and the tendency to hallucinate or produce semantic-
ally invalid code. Developing more reliable correction mechanisms

remains an open challenge.

7.4 Applicability to Other Domains

By combining LLM-derived heuristics with enumerative search techniques,

this thesis demonstrates that it is possible to build synthesis systems that
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are both efficient and reliable. This hybrid approach opens the door to scal-
able, formally correct program synthesis that leverages the best of both
statistical and symbolic reasoning. As large language models continue to
evolve, integrating them effectively into symbolic frameworks holds prom-
ise for the next generation of intelligent software development tools.

In this thesis, we have demonstrated its effectiveness in diverse syn-
thesis settings, from SyGuS benchmarks to tensor algebra lifting, show-
ing that a learned heuristic from LLMs can reliably guide enumerative or
repair-based search. This principle applies equally well to domains that
expose a well-defined domain-specific language (DSL) and verifiable se-
mantics. For example, in structured query languages such as SQL or formula-
driven environments like Excel, the space of target programs can be con-
cisely described by a grammar or template. Given such a DSL, an LLM
can propose plausible candidate functions that capture the user intent,
and when these initial guesses fail, an enumerative or constraint-quided
search can repair or complete them toward correctness. Hence, we be-
lieve, by providing a compact DSL and a mechanism for automatic veri-
fication, the hybrid framework can be adapted to many real-world applic-
ations where correctness and interpretability are essential, ranging from
data transformation and spreadsheet automation to robotic task planning

and scientific computation.
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