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Abstract
Program synthesis aims to automate the construction of programs that

satisfy user-defined specifications, yet existing approaches face trade-offs

between correctness, scalability, and efficiency. One established approach

is syntax-guided synthesis (SyGuS), inwhich theuser provides both a formal

specification of the desired program behaviour and a syntactic template,

typically expressed as a context-free grammar. However, it becomes com-

putationally expensive as the grammar grows and the number of possible

programs increases. In contrast, machine learning methods, including

large language models (LLMs), can generate code quickly by learning pat-

terns from large datasets, but they often produce incorrect or unverifiable

programs.

This thesis presents two complementary lines of research for integrat-

ing large language models (LLMs) into program synthesis. The first de-

velops prompt engineering techniques to automatically select the most

effective prompt-LLM configuration for a given synthesis task. The second

investigates hybrid synthesis methods that combine the correctness guar-

antees of classical SyGuS techniques with the speed and generalisation

capabilities of LLMs. This thesis further demonstrates the applicability of

hybrid synthesis methods to domain-specific program lifting, where trans-

lating low-level code into high-level representations is essential for ma-

chine learning workloads. Together, these contributions advance the de-

velopment of program synthesis frameworks that are both principled and

practical.
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Lay Summary
Software engineers increasingly rely on large language models (LLMs)

to draft code quickly, yet these systems still hallucinate bugs and offer

no formal guarantees. Conversely, classical program synthesis tools ex-

plore programs with formal guarantees but become increasingly slow as

the search space expands. This thesis presents two complementary lines

of work that enhance the reliability and efficiency of program synthesis

using LLMs.

First, we address the problem of choosing the most effective solver for

a given synthesis task. Different LLMs and prompt styles vary widely in

their performance, and symbolic solvers are still often better for some

tasks. We develop CYANEA, an online prompt selection framework that

uses a contextual multi-armed bandit to predict the best LLM–prompt pair

or symbolic solver based on features of the input query.

Second, we focus on scenarios where LLMs generate incorrect solu-

tions. Instead of discarding these failed attempts, we extract probabilistic

grammars from them, capturing patterns in their structure. These gram-

mars are then used to guide enumerative search, effectively turning LLM

outputs into heuristics. This hybrid method, by combining statistical guid-

ance from LLMs with formal symbolic search, boosts synthesis success by

up to 𝟪𝟢.𝟣% compared to using the LLM alone, and outperforms state-of-

the-art solvers on SyGuS benchmarks.

We also apply this hybrid synthesis framework to domain-specific pro-

gram lifting, where low-level tensor kernels are translated into high-level

representations in TACO, a tensor algebra DSL. Our system, STAGG, integ-

rates LLM sketching with guided search and achieves 𝟫𝟫% verified cor-

rectness on real-world benchmarks, outperforming existing tools in both

speed and coverage.
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Together, these contributions show how large language models can be

used more effectively, either through careful prompt selection or as heur-

istic generators, to enable scalable and correct program synthesis.
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Chapter 1

Introduction

Program synthesis aims to automatically generate correct programs from

high-level specifications, such as logical constraints, input-output examples,

or natural language descriptions. Classical approaches to synthesis, par-

ticularly syntax-guided synthesis (SyGuS) and counterexample-guided in-

ductive synthesis (CEGIS), provide rigorous correctness guarantees by ex-

haustively exploring and verifying the program space. However, these

methods often suffer from a combinatorial explosion as the search space

grows, making them difficult to scale to complex domains and large gram-

mars.

In contrast, large language models (LLMs) have demonstrated remark-

able proficiency in generating code snippets quickly and flexibly. Their

outputs are often impressively fluent and creative, capturing a broad spec-

trum of programming patterns. However, LLM-generated code frequently

lacks the formal correctness guarantees required formany synthesis tasks.

Hallucinated logic or subtle semantic errors can undermine the reliability

of these outputs, limiting their applicability in high-assurance settings.

This thesis proposes two complementary research topics. First, we study

how to choose among many possible LLM–prompt combinations (or a tra-

1



2 Chapter 1. Introduction

ditional enumerator) for a given query, balancing accuracy, latency, and

cost. Second, we study how to exploit even incorrect LLM solutions by con-

verting them into guidance that accelerates enumerative search.

Chapter 3 introduces CYANEA, a framework designed to address a key

practical challenge in program synthesis: how to dynamically select the

most effective configuration for each new query. Today’s synthesis work-

flows offer many options, symbolic solvers with formal guarantees, mul-

tiple large language models (LLMs), and a growing variety of prompt en-

gineering techniques, but performance varies wildly across tasks. Even

among LLMs, the effectiveness of a prompt can depend heavily on subtle

features of the synthesis problem, such as logical complexity, grammar

size, or constraint type. As a result, no single LLM–prompt pair consist-

ently performs best across queries. Selecting the wrong pair not only re-

duces accuracy but also wastes time and money, especially when using

commercial APIs that charge per token. We consider three kinds of exist-

ing prompting techniques: manual, continuous, and discrete. All three tech-

niques attempt to improve the performance of LLMs without modifying

the LLM itself. CYANEA learns to make these choices automatically. It ob-

serves features of each incoming synthesis query, such as the keywords,

length, and logic type, and predicts which solver or LLM–prompt pair is

most likely to succeed. Over time, it improves its decisions by learning

from past outcomes. This learning process balances exploration (trying

less-tested options) with exploitation (choosing proven ones), a strategy

known in machine learning as a contextual multi-armed bandit. CYANEA

also allocates time and token budgets across solvers in a cost-aware way,

rather than using them uniformly. Together, this adaptive selection and

resource allocation lead to a 𝟥𝟩.𝟤% increase in success rate compared to

the best static solver, approaching oracle-level performance under fixed
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computational budgets.

Chapter 4 focuses on mining the solution with LLM heuristics for Sy-

GuSbenchmarks. While LLMs are increasingly effective at generating code,

direct prompting alone remains unreliable for such tasks. In initial experi-

ments, one-shot prompting, where the model is asked to generate a com-

plete program given the specification, solves only about half of the bench-

marks. These failures often stem from subtle logical errors. However, even

when the answers generated by LLMs are wrong, they tend to contain use-

ful fragments, which we call probabilistic context-free grammars (pCFG),

which we will introduce in Chapter 2. To capitalise on this partial know-

ledge, we first introduce pCFG-synth, which distils LLM-generated candid-

ates into a probabilistic context-free grammar. This grammar encodes the

LLM’s biases as rule probabilities, allowing symbolic enumerators to prior-

itise candidates that are more likely to resemble a correct solution. To go

further, we present iLLM-synth, which tightly integrates the LLM into the

enumerative search loop. As the search proceeds and uncovers counter-

examples or promising partial programs, these are incorporated into new

prompts that elicit “helper” fragments from the LLMs. These helpers are

then added back into the probabilistic grammar, continuously refining the

heuristic as the search evolves. This creates a dynamic feedback loop in

which symbolic reasoning and neural guidance iteratively reinforce each

other.

Finally, Chapter 5 validates thehybrid synthesis approach in a real-world

setting, lifting dense tensor kernels from C into the TACO DSL. This prob-

lem is representative of a growing class of codemigration andoptimisation

taskswhere legacy codemust be ported to specialisedDSLs to exploitmod-

ern compiler infrastructures and hardware accelerators. Manual trans-

lation is tedious, error-prone, and requires domain expertise, while fully
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automated lifting is difficult due to the semantic gap between low-level

imperative code and high-level tensor algebra constructs. To address this,

we present STAGG, a synthesis framework that applies our hybrid method-

ology end-to-end. STAGG begins by querying an LLM formultiple solutions

of the target program in the TACO DSL. These solutions, even when incor-

rect, reveal heuristics that are distilled into a probabilistic grammar. The

symbolic search engine then explores candidates guided by this learned

grammar. To ensure correctness, each candidate is subjected to an I/O

checking phase and a bounded model checking phase that verifies func-

tional equivalence with the original C kernel. This real-world application

highlights the practical value of combining LLMs with program synthesis,

where the LLM contributes rich, domain-specific heuristics without requir-

ing manual engineering, and the synthesis technique ensures precision

and correctness. On benchmarks drawn from existing literature, STAGG

achieves 99% correctness, while delivering order-of-magnitude runtime

improvements over previous lifting tools.

The remainder of this dissertation is structured to follow the progres-

sion from foundational concepts to applied systems. It begins with essen-

tial background (Chapter 2) and a review of related work (Chapter 6) to

frame the contributions in context. The core chapters develop increasingly

integrated hybrid synthesis techniques, first addressing selection among

solvers, then combining LLMswith program synthesis, and finally applying

these ideas to a real-world code lifting task. Each chapter is accompanied

by an empirical evaluation that highlights its practical benefits. The dis-

sertation concludes in Chapter 7 with reflections on limitations, broader

implications, and future directions for research in LLM-guided synthesis.



Chapter 2

Background

The foundational background for the techniques and systems developed

in this thesis is provided in this chapter, including the formal problem

definition, the role of grammars in constraining the search space, and the

syntax-guided synthesis (SyGuS) framework.

2.1 Program Synthesis

Program synthesis focuses on automated program creation that satisfies

a high-level specification, which can be comprehensive, such as a basic, un-

refined program, or incomplete, like a logical formula or a set of test cases.

It has applications in planning [23], program analysis [27], data wrangling

[31], and more.

2.2 Grammar

Context-Free Grammar. A context-free grammar is a 4-tuple

𝘎 = (𝘝, Σ, 𝘙, 𝘚).
5



6 Chapter 2. Background

𝘝 is a finite set of variables, also known as non-terminal symbols. Σ with

Σ∩𝘝 = ∅ is called the set of terminal symbols or alphabet. 𝘙 ⊆ 𝘝 ×(𝘝 ∪Σ)* is
a finite relation describing the production rules of the grammar. We define

𝘙Σ = 𝘙 ∩ 𝘝 × Σ*, i.e. the set of rules restricted to those whose right-hand

side only consists of terminal symbols. Elements of (𝘝 ∪ Σ)* are known as

words in sentential form. 𝘚 ∈ 𝘝 is the start symbol of the grammar 𝘎.
Given a context-free grammar 𝘎 = (𝘝, Σ, 𝘙, 𝘚) with 𝘹, 𝘺 ∈ (𝘝 ∪ Σ)* and

(𝛼, 𝛽) ∈ 𝘙 we say that 𝘹𝛼𝘺 yields 𝘹𝛽𝘺, written 𝘹𝛼𝘺 → 𝘹𝛽𝘺. We say that 𝘹
derives 𝘺 written 𝘹 →* 𝘺 if either 𝘹 = 𝘺 or 𝘹 → 𝘹𝟣 → …𝘹𝘯 → 𝘺 for 𝘯 ≥ 𝟢.
Finally, we define the language of a grammar

ℒ(𝘎) = {𝘴 ∈ Σ* ∣ 𝘚 →* 𝘴}.

We now introduce two extensions of context-free grammars:

Weighted Context-Free Grammar, wCFG. A weighted context-free

grammar(wCFG) [65, 73] is a 5-tuple

𝘞𝘎 = (𝘝, Σ, 𝘙, 𝘚,𝘞)

such that (𝘝 , Σ, 𝘙, 𝘚) is a context-free grammar and𝘞 is a function assigning

a numeric value to each rule 𝘳 ∈ 𝘙.
Probabilistic Context-Free Grammar, pCFG. A probabilistic context-

free grammar [65, 73] is a 5-tuple

𝘗𝘎 = (𝘝, Σ, 𝘙, 𝘚, ℙ)

such that (𝘝 , Σ, 𝘙, 𝘚) is a context-free grammar and ℙ is a probability mass

function assigning a probability ℙ[𝘳] to each rule 𝘳 ∈ 𝘙. ℙΣ is the probability

mass function that assigns a probability to ℙΣ[𝘳] to each rule 𝘳 ∈ 𝘙Σ. A

pCFG is a specific instance of a wCFG, where the weights are normalised to

represent probabilities, satisfying the fundamental principle of probability

theory that the sum of probabilities for all possible rules must equal one.
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2.3 Satisfiability Modulo Theories

Boolean satisfiability (SAT) is the decision problem of determining whether

a given Boolean formula can be made true by some assignment of truth

values to its variables. Satisfiability Modulo Theories (SMT) extends SAT

solving to richer logical contexts. Instead of only Boolean variables, SMT

deals with formulas that include predicates over structured domains like

numbers, bit-vectors, or data structures. It asks whether a first-order for-

mula is satisfiable with respect to some background theory, generalising

the SAT problem to constraints modulo theories such as arithmetic, ar-

rays, or equality with uninterpreted functions. A theory 𝘛 is essentially a

set of assumptions or axioms that constrain the behaviour of certain func-

tions and predicates, usually corresponding to a well-defined domain like

integers, reals, or bit-vectors.

2.4 Syntax-Guided Synthesis

In general, program synthesis is concerned with the generation (i.e., syn-

thesis) of a program that satisfies a certain specification. Syntax-guided

synthesis (SyGuS) describes a standardised function synthesis format that

precisely defines a synthesis problem within first-order theories [14]. We

will use the notation𝜙[𝘍 ↦ 𝘧 ] to denote the replacement of all occurrences

of 𝘍 in 𝜙 with the concrete implementation 𝘧 , while substituting all argu-

ments to 𝘧 by the arguments of 𝘍 in the same order.

A SyGuS problem is a 4-tuple ⟨𝘛, 𝘎, 𝜙, 𝘍⟩ such that 𝘛 is a first-order the-

ory, 𝘎 is a context-free grammar, 𝜙 is a first-order formula, and 𝘍 is a func-

tion symbol that may occur in 𝜙. A solution to a SyGuS problem ⟨𝘛, 𝘎, 𝜙, 𝘍⟩
is either a function 𝘧 such that 𝘛 ⊧ 𝜙[𝘍 ↦ 𝘧 ] and 𝘧 ∈ ℒ(𝘎), or proof that no
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such function can exist.

SyGuS closely follows the syntax and semantics of SMT, and hence 𝘛
usually refers to theories that are also common in SMT. Usually, SMT solv-

ers are queried in the background of SyGuS solvers to verify solution can-

didates. This connection is made explicit in Counter-Example Guided Induct-

ive Synthesis (CEGIS) [101]. CEGIS is a family of algorithms that alternate

between a synthesis phase, which searches for a candidate solution that

works for a subset of inputs, and a verification phase, where the candid-

ate is checked against all possible inputs. If the verification fails, a counter-

example is passed back to the synthesis phase and appended to the subset

of inputs used to guide the search. The synthesis phase is often implemen-

ted as an enumerative search [5, 95, 3].



Chapter 3

Online Prompt Selection for

Program Synthesis

The material in this chapter comes from paper Online Prompt Selection for

Program Synthesis [60], published at AAAI 2025. I designed and implemen-

ted the algorithms, frameworks presented in this chapter, and also carried

out the experimental evaluation.

3.1 Introduction

Large Language Models (LLMs) are beginning to dominate the discourse

around program synthesis and code generation. So much so, that one

might suppose they are the de facto answer to all code-generation ques-

tions. However, this is not the case. There are many synthesis problems

in which LLMs still fall far short of the basic enumerative techniques and

symbolic solvers [63, 13]. In addition, even when an LLM is the best choice,

they still hold a significant barrier to entry for the inexperienced user: first,

not all LLMs perform uniformly well across all problem sets, and it is of-

ten unclear which LLM a user should choose; second, the performance

9
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of LLMs is often dependent on careful prompt engineering by expert re-

searchers, with the literature reporting performance gains from many dif-

ferent prompting styles. Finally, compounding the challengeof these choices,

calling LLMs is often expensive (in terms of computational cost, or the fin-

ancial cost of using commercial APIs), and so making the wrong choice for

a large set of synthesis tasks is highly undesirable. This chapter addresses

these gaps through an online learningmethod that, given a synthesis task,

will predict whether a symbolic solver or LLM, from a portfolio of LLMs, is

most likely to solve the problem, with a corresponding prompting style.

We collate a portfolio of prompting styles and language models, which

we combine into LLM-prompt pairs that we refer to as “solvers”. We for-

mulate the task of ranking the solvers in order of most likely to solve the

problem as a multi-armed bandit problem [8]. The multi-armed bandit

sequentially selects between choices (in our case, solvers) with unknown

rewards (in our case, rewards are given for solving problems correctly and

fast or with low computational cost). It trades off exploration, i.e., trying

new solvers, with exploitation, i.e., using solvers that are known to be good.

We also present a second variation of this formulation, with multiple lay-

ers of bandits. The top multi-armed bandit selects between the symbolic

solver and the LLMs, and then the bandits in the lower layer predict the

best prompt style for the chosen LLM.

We implement an instance of our approach, CYANEA, and evaluate it

on synthesis tasks from the syntax-guided synthesis competition [4], from

the literature on ranking function synthesis [33, 34], and generated from

the SMT competition [85]. CYANEA solves 37.2% more synthesis queries

than the best single LLM or solver, and gets within 4% of the virtual best

solver.
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3.2 Overview

3.2.1 Problem Statement

We hypothesise that program synthesis users will frequently have not just

one but a series of synthesis problems to solve. For instance, when syn-

thesising invariants, onemay be synthesising invariants formultiple differ-

ent loops within the same code base or system under verification. Users

may also have different needs when it comes to performance (e.g., fastest,

solves most queries, cheapest).

An example program synthesis problem, written in SyGuS-IF [83], is

shown inBenchmark 1. Given a candidate solution, we can validatewhether

this solution is correct or not using a Satisfiability Modulo Theories (SMT)

solver, by checking if the formula

∃𝘹.¬𝜙(𝘧 )

is satisfiable (in which case the candidate 𝘧 is incorrect) or not.

1 (set-logic LIA)

2

3 (synth-fun fn0 ((vr0 Int) (vr1 Int) (vr2 Int)) Int

4 ((Start Int) (StartBool Bool) (Const Int)) (

5 (Start Int

6 (Start

7 Const

8 (- Start)

9 (+ Start Start)

10 (- Start Start)

11 (∗ Start Const)

12 (div Start Const)

13 (mod Start Const)
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14 (abs Start)

15 (ite StartBool Start Start)

16 vr0 vr1 vr2))

17 (StartBool Bool

18 (StartBool

19 (> Start Start)

20 (= Start Start)

21 (>= Start Start)

22 (and StartBool StartBool)

23 (or StartBool StartBool)

24 (not StartBool)

25 true))

26 (Const Int (0 1))))

27 (declare-var vr0 Int)

28 (declare-var vr1 Int)

29 (declare-var vr2 Int)

30 (constraint (>= (fn0 vr0 vr1 vr2) vr0))

31 (constraint (>= (fn0 vr0 vr1 vr2) vr1))

32 (constraint (>= (fn0 vr0 vr1 vr2) vr2))

33 (constraint (or (= vr0 (fn0 vr0 vr1 vr2)) (or (= vr1 (

fn0 vr0 vr1 vr2)) (= vr2 (fn0 vr0 vr1 vr2)))))

34

35 (check-synth)

Benchmark 1: A SyGuS specification that asks for a program that

synthesizes the maximum of 𝟥 inputs.

Given a list of synthesis queries 𝘘 = {𝘲𝟣, … 𝘲𝘮}, and a set of solvers 𝘚 =
{𝘴𝟣, … 𝘴𝘯}, where each solver is either a symbolic solver, or an LLM paired

with a prompting style (and LLM-prompt pair), we wish to use the solvers

to generate a list of synthesis functions 𝘧𝟣, … 𝘧𝘮 such that each 𝘧𝘪 is a valid



3.2. Overview 13

solution to 𝘲𝘪, using as few computational resources as possible. Wedefine

computational resources to be both the time spent solving a query, and an

estimate of the financial cost of running it (which is based on tokens used

for the LLMs, or runtime for the symbolic solver).

3.2.2 Approach

We capture the computational resources we care about as reward func-

tions. Our approach takes in 𝘘, 𝘚, and a time budget, and cost budget

per query, 𝘛 , and 𝘊, respectively. For each synthesis query, our approach

predicts an order of solvers that aremost likely to solve the synthesis prob-

lem, and the time and cost that each is likely to take. We then distribute

the total time and cost budget across the solvers accordingly, and deploy

the solvers in sequence until the problem is solved.

LLM/Symbolic Solver

 
SyGuS

Featurizer
 Predictor

Cost
Allocator

Time
Allocator

SMT-LIB    
Program    

Reward

Distribution

 Distribution

Time

Cost

Figure 3.1: Single-layer Multi-Armed Bandit prediction
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Figure 3.2: Multi-layer Multi-Armed Bandit prediction

After a problem is solved, data is passed back to update the predictors,

in the form of any rewards obtained by the solvers called, and the solving

time and cost.

We break down the task of predicting LLM-prompt pairs in two different

ways. In the first, we implement a single multi-armed bandit that predicts

between all LLM-prompt pairs at once, shown in Figure 3.1. In the second,

we implement amulti-stage prediction, where we first predict which solver

is most likely to succeed, and then predict which prompt strategy is most

likely to succeed if an LLM is chosen, shown in Figure 3.2. The components

are outlined as follows:

Featurize:

The featurize block takes in a synthesis query 𝘲 in SyGuS-IF and generates

a vector of features 𝘧⃗ representing that problem. We use a set of custom-

designed features, which are outlined in Section 3.4.
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Multi-armed bandit solver and prompt predictor:

Themulti-armed bandit component of our workflow takes in a feature vec-

tor that represents the synthesis problem, and predicts the order in which

its library of solvers will perform, according to a cost function. In our im-

plementation, the library of solvers consists of two LLMs, with 6 prompting

styles, and an enumerative solver, detailed in Section 3.3.

We frame the problem as a contextual multi-armed bandit problem,

where the actions that the agent is choosing are the solvers. We imple-

ment two variations of this: the first, shown in Figure 3.1, uses a single

multi-armed bandit agent to rank a set of LLM/prompt combinations and a

symbolic solver. The second, layered approach, uses several layered multi-

armed bandit agents; one to choose between the base LLMs or symbolic

solvers, and a further agent for each LLM, which predicts which prompt to

deploy.

We give details of the contextual multi-armed bandit algorithms in Sec-

tion 3.4. After a solver is deployed, the reward obtained by that solver is

passed back to the solver performance predictor, which stores a list of re-

wards obtained so far by each solver.

Time and token budgeting:

The final two phases of our pipeline allocate a certain amount of tokens to

each LLM, followed by a number of time. Both are described in Section 3.4.

Deploy solvers:

Finally, given a ranked list of solvers, and a time and token budget for each,

the deploy phase sequentially calls each solver on the synthesis problem

until it either returns an answer or exceeds the time or token budget. If a
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solver returns the answer, we check if the answer satisfies the specification

using an SMT-solver. We also return all information about which solvers

successfully solved or did not solve the problem, the reward they obtained,

and how long they took to the prediction phases of the pipeline.

3.3 Prompting Styles and Solvers

In this section, we give an overview of the library of solvers 𝘚 that our ap-

proach is equipped with. First, we discuss the prompting styles:

3.3.1 Prompting Styles

We develop a library of prompt templates based on the prompting styles

reported to be successful in the literature. We detail the styles here, and

illustrate them on our running example. Once we have chosen a style, we

give the LLM up to 𝟣𝟨 attempts to produce a correct synthesis result. If an

answer produced is incorrect, we report the error information obtained

from the SMT-solver used to check correctness back to the LLM:

Natural language prompts:

LLMs are primarily trained on natural language inputs, and so we imple-

ment a simple syntactic transformation procedure that translates a set of

logical constraints into natural language.

Few-shot prompting:

Few-shot prompting is promptingwhereby the LLM is providedwith a num-

ber of examples of the task, with satisfying solutions, before asking it to
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solve a new, similar task. We use 𝟥 examples, taken from the previously

solved synthesis problems.

Higher resource programming language prompts:

Our synthesis queries are in SyGuS-IF, a relatively uncommon language in

the training data for LLMs. Thus, we use a prompting style that asks for

the solutions in a higher-resource language and then asks for the transla-

tion into SyGuS-IF. We choose Lisp as the higher resource language rather

than a more common language like Python because we find that transla-

tion from Python to SyGuS-IF is more error-prone than translation from

Lisp, which is a fully parenthesised prefix notation similar to SyGuS-IF. This

is a multi-stage prompting approach, and the prompts are shown below.

When asking for the translation into Lisp, we also provide 3 examples of

previous translations:

Solve the following function ``function" with Lisp.

Only return one function, do not use recursion or

iterations. Do not return any text that isn't code.

Minimise token use. It's important you keep the

variables and function names the same as the original

function. The following is the problem that you are

meant to solve:

You need to synthesise: (synth-fun function ((x Int) (y

Int) (z Int)) Int). The function is called ``solution

" and takes arguments x, y, and z. These arguments

are Int, Int, and Int.

Write only one Lisp-like method ``defun function" that

never violates the SMT-LIB constraints.

No built-in functions in code.

Universally quantified variables: x, y, and z. The types
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of universally quantified variables are Int, Int,

and Int.

The function must follow the constraints:

[constraints]

Prompt 1: Prompt for Benchmark 1 to generate Lisp response.

Please convert the Lisp function you generated into SMT-

LIB format. Follow these guidelines:

Start the function with "(define-fun".

Provide only the function definition, starting with "(

define-fun".

Ensure the SMT-LIB function contains exactly one

function definition.

Avoid using iterations, bitvec, or int notations inside

the body.

Check the function description in the first message to

ensure variable and function names are consistent.

Use the assigned values from the Lisp code during

translation.

Do not introduce any new variables that do not exist in

the Lisp function.

Pay attention to types. If there are bit-vector terms,

ensure they are of the same width.

Rules for SMT-LIB: +, -, *, ite, >, =, <, >=, <=, and,

or, not, true, false.

Prompt 2: Prompt for Benchmark 1 to convert Lisp to SMT-LIB.
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Prompting with roles:

Prefixing a prompt with an appropriate role description for the LLM can

improve the performance of the LLM [115]. We append the sentence “You
are a good program synthesiser” to the beginning of each prompt,

if using “prompting with roles”.

Emotional stimuli:

It has been shown in the literature that adding emotional stimuli to prompts

can improve the performance of LLMs [58]. We append the following emo-

tional stimuli to the prompt.

You are excited to help, and you are ready to provide

the best answer possible. You understand that if you

fail to provide the best answer, your client will be

extremely upset. Please don't fail me.

Prompt 3: Prompt for Benchmark 1 to add emotional stimuli.

Matrix of prompts:

In order to reduce the search space of prompts, we choose a fixed combin-

ation of prompting styles, shown in Table 3.1.
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Prompt Style 1 3 3 7 7 7

Prompt Style 2 3 3 7 7 3

Prompt Style 3 7 3 7 7 7

Prompt Style 4 7 7 7 7 7

Prompt Style 5 7 3 3 7 7

Prompt Style 6 3 3 3 3 7

Table 3.1: Prompt styles

3.3.2 Enumerative Solver

The final solver in the library is an enumerative solver, based on Counter-

Example Guided Inductive Synthesis (CEGIS) [101], with an 𝘈∗ based search

phase. Details about 𝘈∗ search will be discussed in Chapter 4. CEGIS al-

ternates between a synthesis phase, which searches for a candidate solu-

tion that works for a subset of inputs, and a verification phase, where the

candidate is checked against all possible inputs. If the verification fails, a

counterexample is passed back to the synthesis phase and appended to

the subset of inputs used to guide the search. In our case, the synthesis

phase is implemented as an 𝘈∗ search, similar to that used by Euphony [57].

𝘈∗ is a graph search algorithm that uses two functions to guide its search:

𝘧 : the sum of the costs on the edges used to reach the current state, and 𝘨:
the estimated sumof the costs on the edges that will be used to reach a tar-

get state from the current state. In our setting, each state is an expression
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(a partial or complete program) that can be generated from the grammar

for the full logic, the initial state is start symbol of the grammar, the target

states are any complete program, and each edge between states 𝘴𝘪 and 𝘴𝘬
corresponds to a production rule that can transform the partial program

at 𝘴𝘪 into the partial/complete program at 𝘴𝘫. The cost on any edge is pro-

portional to the number of possible choices (so the more edges there are

leaving from one state, the higher the cost of each edge).

To give some intuition, a partial program that contains fewnon-terminals

and where each non-terminal symbol can only be replaced by production

rules that lead immediately to a complete program has a low estimated

cost to reach the target. We refer the reader to the detailed descriptions in

the related work [57, 63] for the full details. We chose this implementation

of CEGIS as the enumerative solver to use because, in our experiments, it

excels at finding short solutions that the LLMs often struggle with, without

running into thememory issues that often plague bottom-up searchmeth-

ods in synthesis.

3.4 Online Solver Selection

The aim of the multi-armed bandit is to predict a ranking of which LLM

and prompt combinations are most likely to solve the synthesis problem,

and obtain the maximum reward while doing so. In our setting, the agent

must trade off the exploration of using LLMs and prompts that it has not

tried before, vs deploying LLM and prompt combinations that are known

to have given high rewards in the past. In fact, we use an extension of the

standardMAB problem, and ask the agent to predict a sequence of solvers

to deploy rather than a single solver.
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3.4.1 𝘬-Nearest Neighbor
Wechoose 𝘬-NearestNeighbour as our contextualmulti-armedbandit. Other

contextual multi-armed bandits are available, but many of the common

ones, for instance LinUCB, make assumptions that the performance of

solvers is correlated linearly with the feature vector, which is unlikely to

be the case in our application.

𝘬-NN is a simple supervised learning classifier. In our context, given a

synthesis query 𝘲, it identifies the nearest 𝘬 previously solved queries to 𝘲
by calculating the Cartesian distance between the feature vectors. Each of

the 𝘬 queries 𝘲𝟣, … 𝘲𝘬 is labelled with the solver that it was solved by and

the reward that was obtained, 𝘳𝟣, … 𝘳𝘬 respectively. The score for a solver

𝘴𝘪 is given by the sum of the rewards for all queries solved by 𝘴𝘪. We rank

the solvers based on this score (the highest score is best). For any solvers

that do not appear in this ranking, we randomly shuffle them and append

them to the end of the list of solvers. If an LLM-prompt pair solves a query,

we add a query with that feature vector to our database of queries with

the corresponding reward.

For the double-layered multi-armed bandit, the first layer contains one

𝘬-NN multi-armed bandit which selects only between the LLMs, and the

second layer contains a 𝘬-NN multi-armed bandit for each LLM, which se-

lects between prompts. The second layer 𝘬-NN predictors are independ-

ent.

Reward functions:

Our approach is customizable to different reward functions We use three

reward functions: the first simply aims to solve the queries as fast as pos-

sible, regardless of computational cost; and the second takes computa-
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tional cost into account. The first reward function is given as follows:

𝘳𝘵 =
⎧⎪⎨⎪⎩

𝟢 if query 𝘲 is unsolved,
(𝟣 − 𝘵

𝘛 )
𝟦

if query 𝘲 is solved

where 𝘵 is the time taken to solve query 𝘲, and 𝘛 is the total time budget

for solving query 𝘲.
The second reward function aims to prioritise cheaper solving, and so

accounts for the number of tokens in the prompt and response.

𝘳𝘤 =
⎧⎪⎨⎪⎩

𝟢 if query 𝘲 is unsolved,
(𝟣 − 𝘤

𝘊 )𝟦 if query 𝘲 is solved

where 𝘤 is a cost estimate proportional to the number of tokens used in

solving query 𝘲 and 𝘊 is the total cost budget for solving query 𝘲. The cost

estimate is defined as

𝘤 = input tokens + 𝟥 × output tokens
for LLMs, which accounts for the higher cost of output tokens from com-

mercial languagemodel APIs. The actual cost of deploying an enumerative

solver is proportional to the runtime and would be negligible for all quer-

ies in comparison to the cost of calling a commercial language model, so

we fix the cost for the enumerative solver to be a small constant (𝟢.𝟦) for
all queries.

The final reward is a simple binary reward, 𝘳𝘣, which evaluates to 𝟣 if a

query is solved and 𝟢 if it is not solved.

Features:

A key component of the contextual multi-armed bandit is the featurization.

We propose a feature extraction method to analyse SyGuS queries, captur-

ing key syntactic attributes and query types. The extracted featureswe use

are:



24 Chapter 3. Online Prompt Selection for Program Synthesis

Keywords: Frequencies of specific SMT-LIB keywords (e.g., +, −, ∗,div, etc).

Query length: The total number of tokens in the file.

Constants: Number of constants of each type.

Query logic: e.g., BV, LIA, PBE, INV, etc.

3.4.2 Time and Token Budget Allocation

Thefinal stageof thedynamic solver selectionpredicts the time that should

be allocated to solver, and the cost. The goal is to allocate a sufficient pro-

portion of our time and cost budget to each solver in the series that we are

reasonably confident that it was unlikely to solve the query past this point.

That is, for a solver 𝘴𝘪, we wish to find a minimum time allocation 𝘵𝘪 and
cost allocation 𝘤𝘪 such that 𝘗(𝘵𝘪 < 𝘶𝘪 < 𝘛) ≤ 𝛿𝟣 and 𝘗(𝘤𝘪 < 𝘷𝘪 < 𝘊) ≤ 𝛿𝟤, where 𝘶𝘪
is the true runtime, 𝘷𝘪 is the true cost, and 𝛿𝟣 and 𝛿𝟤 are some small error

thresholds. 𝛿𝟣 is the probability that we failed to solve a query because we

allocated too little time to solving it, and 𝛿𝟤 is the probability that we failed
to solve a query because we allocated too few tokens to it.

Let us consider the cost allocation first: we model each prompt-pair’s

cost per query as an exponential distribution (that is, most queries are

solved with a small number of tokens, only a few queries are solved with

an excessively large number of tokens). We usemaximum likelihood estim-

ation (MLE) [75] to estimate the parameters of the underlying exponential

distribution, given the costs we have observed so far. Suppose we observe

𝘶𝟣…𝘶𝘯 costs, whichwe assume are drawn froman exponential distribution

𝘌𝘹𝘱𝘰𝘯𝘦𝘯𝘵𝘪𝘢𝘭(𝜆). To find the exponential distribution which fits our observa-

tions best, we aim to solve

min𝜆 𝘯 ln𝜆 − 𝜆(Σ𝘪𝘶𝘪),
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where Σ𝘪𝘶𝘪 is the sum of all costs observed so far. This gives us the minim-

iser

𝜆∗ = 𝘯
∑𝘪 𝘶𝘪 .

We can apply the cumulative distribution function and calculate 𝘤𝘪 as:

𝘤𝘪 = − ln(𝛿 + 𝘦−𝜆∗𝘊)
𝜆∗ .

Tomake this contextual, weuse only the costs from the 𝘬 nearest samples,

according to the feature vectors. We divide the total token budget 𝘊 greed-

ily between the solvers, calculate 𝘤𝘪 for each solver starting from the be-

ginning of our ranking, and, once we have reached the total budget 𝘊, all
following solvers are allocated zero tokens. If we reach the end of the list

and have remaining tokens, they are given to the final solver.

We repeat all of the above for a time. It is worth noting that the time

budget is not independent from the cost budget, because if a solver is al-

located zero tokens by the cost budget allocator, the time budget allocator

will also not allocate it any time.

3.5 Evaluation

We implement an instance of our approach, calledCYANEA, using two LLMs:

GPT(gpt-3.5-turbo-0125) and Llama(Meta-Llama-3-70B) and the enumerat-

ive solver described previously. We set a total timeout of 𝘛 = 𝟣𝟢𝟢 seconds

and a total cost budget of 𝘊 = 𝟣𝟢𝟢, 𝟢𝟢𝟢. For all 𝘬-NN predictors, we set 𝘬 =
𝟣𝟧. We conducted a parameter sweep of 𝘬 and found that values between

𝟣𝟢 and 𝟣𝟧 produce comparable results. We use CVC5 [12] as the SMT solver

for validating the correctness of candidate solutions. We compare our ap-

proach to the base solvers and to a “virtual best” solver result, which is

calculated by choosing the solver known to give the highest reward for
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each query. To evaluate the utility of the time and budget allocations, we

compare to a linear distribution of the time and cost budget (where we

simply divide the total budget equally between all solvers), termed “linear”

in the results.

3.5.1 Synthesis Queries and Scoring.

We evaluate our approach on synthesis queries from the Syntax-Guided

Synthesis competition [4], ranking function synthesis [33], and automat-

ically generated from the SMT competition [85]. The synthesis queries

cover a broad range of use-cases of synthesis, from code generation and

programming-by-example, to ranking function and invariant synthesis. The

total number of queries is 𝟣𝟤𝟨𝟫.
We report the total reward achieved, calculated using the reward func-

tions used for the prediction. We also report the score according to the

Par-2 score used by the SAT competition [107]. This is calculated over 𝘯
queries:

𝘫=𝘯
∑
𝘫=𝟣

⎧⎪⎨⎪⎩

𝘵𝘪 if 𝘲𝘪 is solved,
𝟤 ∗ 𝘛 otherwise

where 𝘵𝘪 is the runtime for solving query 𝘲𝘪, and 𝘛 is the total time budget

per query.

3.5.2 Analysis of Results

Theperformanceof the LLM-prompt pairs and enumerative solver is shown

in Table 3.2. The best-performing single solver solves 𝟨𝟦.𝟥% of the quer-

ies. On the other hand, the virtual best solver solves 𝟫𝟣.𝟪% of queries. The

best-performing instance of CYANEA solves 𝟪𝟪.𝟥% of the queries, achiev-

ing a score of 𝟫𝟨.𝟣% of the virtual best solver, and a Par-2 score < 𝟦𝟢% of
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Solver % Solved # Solved (𝘳𝘣) Par-2 Score 𝘳𝘤 𝘳𝘵 avg time (s) avg. cost

Virtual Best 91.8% 1165 23596 1106.2 1019.2 2.4 670.3

Single 𝘬-NN (𝘳𝘤) 88.3% 1120.6±7.3 37636.3 1008.7 904.4 7.1 3122

Single 𝘬-NN (𝘳𝘵) 88.2% 1119.1±8.2 37813.7 1006 905.7 7 3176.9

Single 𝘬-NN (𝘳𝘣) 88.1% 1117.5±8.3 38793 995.2 888 7.6 3446.5

Single 𝘬-NN linear (𝘳𝘵) 87.0% 1104±0 39072 1000.9 935.2 5.5 3249.6

Single 𝘬-NN linear (𝘳𝘤) 87.0% 1104±0 39072 1002.1 935.2 5.5 3211.4

Single 𝘬-NN linear (𝘳𝘣) 87.0% 1104±0 39182.4 995.4 930.4 5.6 3394.9

Double 𝘬-NN (𝘳𝘤) 84.5% 1071.7±24 53499.3 886.9 774.7 13.1 6366.8

Double 𝘬-NN (𝘳𝘵) 84.4% 1071.1±24.7 53504.3 884.6 776.1 13 6448.3

Double 𝘬-NN (𝘳𝘣) 84.3% 1069.8±24.5 53747.4 887.8 775.2 13 6262.7

Double 𝘬-NN linear (𝘳𝘤) 71.8% 910.7±159.2 80038.4 803.2 732.4 9.2 4589.1

Double 𝘬-NN linear (𝘳𝘵) 71.8% 910.7±159.2 80129.5 801.9 731.8 9.3 4656.1

Double 𝘬-NN linear (𝘳𝘣) 71.8% 910.7±159.2 80220.6 798.2 728.9 9.4 4809.2

llama-p4 64.3% 816 95251.2 752.3 664.2 5.7 2098.2

llama-p3 61.7% 783 106596 678.1 529.1 12 3794.1

llama-p5 59.7% 757 112543.8 644 490.6 13.4 4275.9

gpt-p4 54.3% 689 118273.7 637.1 607.4 3.3 2070.1

enumerator 52.2% 662 122591.6 647.3 626.7 1.8 0.4

gpt-p1 51.6% 655 126533.5 591 531.6 5.7 2678.1

gpt-p6 50.5% 641 129638.3 582.8 513.4 6.3 2508.7

gpt-p5 44.1% 560 145160 510.4 453.1 6 2425

gpt-p3 44.0% 558 145101.6 502.3 464.1 5.2 2900.5

gpt-p2 39.2% 497 156238.9 428.4 431.7 3.7 3755.7

llama-p1 37.2% 472 162184.8 436.5 380.5 5.9 2008.6

llama-p2 35.0% 444 168108 361.6 341.5 7 5119.5

llama-p6 34.8% 442 167963.6 407.3 353.8 5.8 2071.6

Table 3.2: Performance of all instances of CYANEA, and all individual solv-

ers. We report results from CYANEA over 20 runs, with the standard devi-

ation shown for the number of queries solved. The “Virtual Best” solver re-

ports themaximum scores we could achieve if wemade the perfect choice

for each query, using the best reward function for that score (e.g., the score

for 𝘳𝘤 is reported, making choices using 𝘳𝘤.
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the score of the best single solver (lower is better for Par-2 score), shown

in Figure 3.3.
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Figure 3.3: Cumulative Par-2 Score plotted against query number. Lower

is better.

Since the order the selectors see the queries will affect the learning, we

report the average scores of 𝟤𝟢 runs, with the queries randomly shuffled

in each run. When comparing the single to multi-layer approaches, we

note that the multi-layer approach has a far greater standard deviation in

the number of queries solved. We hypothesise that this is because the

selectors in the lower layers see far less data than in the single-layer 𝘬-NN,
making them more sensitive to this ordering.

When evaluating the reward functions used by a single 𝘬-NN, unsur-
prisingly, the best Par-2 score (which is based on solving time) is achieved

using 𝘳𝘵 , the lowest cost per query is achieved using 𝘳𝘤, and the highest
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number of queries solved is achieved using 𝘳𝘣. This is not true for double

𝘬-NN, again we believe because the data is too sparse.

The results for CYANEA using the linear distribution of time and token

budgets demonstrate that the token budget allocator is having an impact

on both Par-2 score and average solving cost, although this effect is not as

large as it would be if the total time budget and cost budget were tighter,

as in many cases CYANEA can run all the solvers on a single query within

the given budget. Whilst the double 𝘬-NN with the linear distribution of

budgets does have lower average costs per query, we hypothesise that

this is because it fails to solve many of the queries that require a higher

cost to solve.

Overall, the predictions that the best-performing instance of CYANEA

is making are close to those of the virtual best solver and, when the pre-

diction is not perfect, the time/budget allocation allows CYANEA to correct

the mistake.

3.5.3 Conclusions

We have presented an approach for online solver and prompt selection for

program synthesis problems; CYANEA demonstrates the effectiveness of

this, achieving a Par-2 score that is more than twice as good as the best

single solver. It also demonstrated how prompt selection can make large

languagemodels more reliable for program synthesis whenmultiple mod-

els and prompting strategies are available. We will turn to a complement-

ary question in next chapter: how can we embed LLMs more tightly into

the synthesis loop itself?





Chapter 4

Guiding Enumerative Program

Synthesis with LLMs

The material in this chapter comes from paper Guiding Enumerative Pro-

gram Synthesis with Large Language Models [63], published at CAV 2024. I

designed the frameworks, in collaboration with Professor Elizabeth Pol-

green, implemented the algorithms and carried out the full experimental

evaluation.

4.1 Introduction

The dominant techniques for formal program synthesis are based around

enumeration [95, 6, 42], and a key challenge is how to guide this enu-

meration to search a huge space of possible programs efficiently. Syntax-

Guided Synthesis(SyGuS) [3] allows the user to restrict the space of pos-

sible programs using a context-free grammar, and, in later work, this has

beenextendedusingpre-trainedprobabilisticmodels such as higher-order

grammars [57] and neural networks [74], trained on a dataset of solved

synthesis problems. However, obtaining these datasets for pre-training is

31
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challenging.

In parallel, the use of pre-trained large language models (LLMs) to gen-

erate code is rapidly gaining traction, with impressive results being ob-

tained on benchmarks with natural language specifications and input out-

put examples [24]. These benchmarks are very different in style to the

logical specifications that formal program synthesis tackles, as most are

procedural code, in Python, and solve classic programming exercise ques-

tions that might be asked of students or interview candidates, and that

onemay find in abundance on sources used in training data, such as Stack-

Overflow and GitHub. In contrast, formal program synthesis benchmarks,

such as those in the SyGuS competition, require functional code, which

must satisfy precise logical specifications derived from problems such as

program analysis [27], and are certainly less abundant in sources of pub-

licly available code for training machine learning models.

In this chapter, we set out to investigate whether off-the-shelf large

language models can solve formal program synthesis problems. We craft

a library of prompts, which enables us to solve roughly 𝟧𝟢% of the SyGuS

competition benchmarks. Wehypothesise that, in the caseswhere the LLM

returns only incorrect solutions, the correct solutions aremost often in the

vicinity of the incorrect solutions, and that, by searching in the neighbour-

hood of the incorrect solutions, we may be able to guide an enumerative

synthesiser to find a solution faster. To that end, we construct a probab-

ilistic Context-Free Grammar (pCFG) based on the incorrect solutions pro-

posed by the LLM, and use this to guide an enumerative synthesiser within

a Counter-Example Guided Inductive Synthesis (CEGIS) loop.

Our final contribution is a full integration of these techniques in a novel

CEGIS algorithm with an inline syntactic oracle, in the form of an LLM that

is queried by an enumerative synthesis phase. We incorporate informa-
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tion obtained during the synthesis search into the queries, prompting the

LLM with partially enumerated functions, incorrect solutions, and counter-

examples, and requesting that it provide “helper functions”, which we use

to update the pCFG guiding the enumerator.

We implement all three techniques described above and evaluate them

on benchmarks from the Syntax-Guided Synthesis competition. We com-

pare with two baselines: the first is an enumerative synthesiser where all

rules in thegrammar are given equal likelihood, and the second is CVC5 [12],

the state-of-the-art SyGuS solver. All techniques easily outperform the

baseline enumerator, and the final technique outperforms CVC5. Our res-

ults demonstrate that, whilst large languagemodels do have the potential

to make significant contributions in the domain of formal program syn-

thesis, this can currently only be achieved by combining these techniques

with existing algorithms in the literature. Enumerative synthesis is not yet

obsolete!

The main contributions of our work are as follows: A set of prompts for

prompting a pre-trained Large Language Model to solve formal program

synthesis problems (Section 4.3.1); A method for guiding an enumerat-

ive synthesiser using LLM-generated probabilistic context-free grammars

(Section 4.4.1); A novel approach to integrating an LLM into an enumer-

ative synthesiser (Section 4.5); And, finally, an implementation and evalu-

ation of all of the above on benchmark problems taken from the Syntax-

Guided Synthesis competition. The results outperform CVC5, the state-of-

the-art synthesiser, as well as our baseline enumerators.
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4.2 Overview

In this chapter, we first present a carefully tailored set of prompts that we

use to evaluate an LLM’s ability to solve formal synthesis problems. We

construct an iterative loop where we prompt the LLM, verify the candidate

solution, and if the solution fails, we prompt the LLM again.

We then present two methods for integrating syntactic guidance from

pre-trained LLMs into an enumerative CEGIS algorithm. The first method,

shown in Figure 4.1, prompts an LLM for solutions to the benchmark, and

generates a pCFG from these solutions before deploying an enumerative

synthesiser, increasing the chance of the LLM solving the synthesis prob-

lem outright. We refer to this method as pCFG-synth.

 
SyGuS

Search

SMT-LIB    
Program    

  LLM

Prompt

Candidate

Verifier

Candidate

Prompt

Grammar

Rule
Weights

Failure
Failure

Success

Figure 4.1: An overview of pCFG-synth. Both the verifier and the LLM have

access to the specification 𝜙 (which is used to generate the prompt for the

LLM, as well as to check whether candidate programs are correct).
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Figure 4.2: An overview of iLLM-synth. Both the verifier and the enumer-

ator have access to the specification 𝜙 (which is used to generate the

prompt for the LLM, as well as to check whether candidate programs are

correct).

The second method, shown in Figure 4.2, integrates the prompting

within the enumerative synthesiser, allowing the prompts to incorporate

additional information obtained during the synthesis process. Here, in-

stead of asking the LLM to provide a full solution, we ask it to provide

helper functions to help “a student” complete the partially enumerated

program. We use the responses to augment the set of production rules in

the grammar and update the weights across the existing production rules.

We refer to this approach, which integrates an LLM into an enumerative

synthesiser, as iLLM-synth. In this section, we give an overview of these

two approaches. The details of the components of both approaches and

their relative performances are found in the subsequent sections. We in-

tegrate both approaches with a probabilistic top-down enumerator and a

weighted search based on the 𝘈∗ algorithm [39, 57].
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4.3 Stand-alone LLM

In this section, we describe how we prompt the LLM as a stand-alone syn-

thesiser. These prompting techniques are then also deployed by pCFG-

synth. We use GPT-3.5-turbo as the LLM. Note that the model is not fine-

tuned to this problem setting. Furthermore, we rename any functions and

variables in the SyGuS benchmarks to generic names to avoid the LLM pro-

ducing solutions solely based on the function names.

4.3.1 Prompting the LLM

Wedesign a library of prompts for programsynthesis problemswith logical

specifications and a single target function to synthesise. These prompts

are deployed in an iterative loop, until a correct solution is obtained, or

the library of prompts is exhausted.

Prompting is an art rather than a science, but we hypothesise that it is

better to ask the LLM to give a solution in a language that is more com-

mon in the training data, and then request it to translate it into our de-

sired SMT-LIB, and experiment with both Python and Lisp. On a subset

of 50 benchmarks, we observed that soliciting responses in Lisp resulted

in a 6% enhancement in the resolution of benchmarks compared to util-

ising Python (and both were better than asking for SMT-lib directly). It is

also reported in the literature that the efficacy of LLMs can be augmen-

ted by including emotional stimuli within prompts [58]. Incorporating the

emotional prompt leads to an 8% increase in the likelihood of generating

accurate solutions compared to standard, non-emotional prompts in our

study.

The following is an example prompt and response sequence for the LIA

example shown in Benchmark 1:
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(set-logic LIA)

(synth-fun function ((x Int) (y Int) (z Int)) Int)

(constraint (>= (function x y z) x))

(constraint (>= (function x y z) y))

(constraint (>= (function x y z) z))

(constraint (or (= x (function x y z)) (or (= y (

function x y z)) (= z (function x y z)))))

(check-synth)

You are a good synthesiser. Do you know what "(define-

fun function ((x Int) (y Int) (z Int)) Int" is doing?

Write only one Lisp-like method "defun function" without

any built-in methods or arrays.

Requirements:

1. No built-in functions.

2. Never violate the SMT-LIB constraints above.

3. Pay attention to the define functions.

4. Ensure the response contains one and only one

function.

5. Do not include any iterations, BitVec, or Int

notations in the function body.

Write it correctly, or I will lose my job and 100

grandmothers will die. Don't disappoint me.

Write only one Lisp-like method "defun fn" that never

violates the SMT-LIB constraints above.

Prompt 4: Prompt for Benchmark 1.

(defun function (x y z)

(ite (>= x y) (ite (>= x z) x z) (ite (>= y vr2) y z

)))

Response 1: Response from LLM after Prompt 4.
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You are close to the right answer. Take another guess.

You have to try something different, think harder.

Write a different Lisp method that never violates the

SMT-LIB constraints above again.

Prompt 5: Prompt requesting a revised solution.

4.3.2 Prompts for invariant synthesis

Invariant synthesis is a specific instance of program synthesis: given a pre-

condition 𝘱𝘳𝘦(𝘹), transition-relation 𝘵𝘳𝘢𝘯𝘴(𝘹, 𝘹′) and post-condition 𝘱𝘰𝘴𝘵(𝘹),
the synthesiser is required to provide an invariant 𝘪𝘯𝘷 that satisfies the

following constraint:

∀𝘹, 𝘹′.𝘱𝘳𝘦(𝘹) ⟹ 𝘪𝘯𝘷(𝘹)∧(𝘪𝘯𝘷(𝘹)∧𝘵𝘳𝘢𝘯𝘴(𝘹, 𝘹)) ⟹ 𝘪𝘯𝘷(𝘹′)∧𝘪𝘯𝘷(𝘹) ⟹ 𝘱𝘰𝘴𝘵(𝘹).
We find that LLMs struggle to reason about constraints presented in the

above format. Inspired by “chain-of-thought” [109] prompting, where the

LLM is asked to provide a step-by-step explanation, we augment our prompt-

ing strategy for invariants by asking the LLMfirst to explain the constraints.

After requesting this explanation, we follow the same interactive prompt

strategy as before.

(synth-inv inv-f ((x Int) (y Int)))

(define-fun pre-f ((x Int) (y Int)) Bool (and (= x 1) (=

y 1)))

(define-fun trans-f ((x Int) (y Int) (x! Int) (y! Int))

Bool (and (= x! (+ x y)) (= y! (+ x y))))

(define-fun post-f ((x Int) (y Int)) Bool (>= y 1))

(inv-constraint inv-f pre-f trans-f post-f)

Please explain the constraints above.

Prompt 6: Integrating LLM-generated explanations into the prompt
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4.3.3 Lisp to SMT-LIB Converter

The final prompts in our prompt library are to ask the LLM to convert any

functions given in Lisp to correct SMT-LIB functions:

You are a good programming language converter. Convert

the Lisp function to SMT-LIB:

Based on the Lisp code provided above, convert the '

defun' Lisp-like code to a corresponding SMT-LIB

function. Use SMT-LIB syntax starting with (define-

fun

Follow these guidelines:

1. Only give me the function definition starting with '(

define-fun'.

2. Pay attention to types. If there are bit-vector terms

, they need to be of the same width.

3. Ensure the SMT-LIB function contains one and only one

function definition starting with '(define-fun'.

4. Do not include any iterations, BitVec, or Int

notations in the function body.

5. Use the assigned values from the Lisp code during

translation.

6. Do not introduce any variables that do not exist in

the Lisp function.

Rules for SMT-LIB: +, -, *, ite, >, =, <, >=, <=, and,

or, not, true, false.

Prompt 7: Request for converting Lisp to SMT-LIB code for response 1.

Upon receiving a response from the LLM, we extracted the Lisp program
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and subjected it to format verification. The resulting SMT-LIB code is rep-

resented in Response 2:

(define-fun function ((x Int) (y Int) (z Int)) Int

(ite (>= x y) (ite (>= x z) x z) (ite (>= y vr2) y z

)))

Response 2: Response from LLM after Prompt 7.

Algorithm 1 CEGIS with weighted search
1: procedure CEGIS(𝘞𝘎, 𝜙)
2: 𝘤𝘦𝘹 ← ∅
3: while 𝘵𝘳𝘶𝘦 do
4: 𝘱𝘳𝘰𝘨 ← ENUMERATE(𝘞𝘎, 𝜙, 𝘤𝘦𝘹, )
5: if VERIFY(𝘱𝘳𝘰𝘨, 𝜙) then
6: return 𝘱𝘳𝘰𝘨
7: else

8: 𝘤 ← VERIFY.GET_CEX

9: 𝘤𝘦𝘹 ← 𝘤𝘦𝘹 ∪ {𝘤}
10: end if

11: end while

12: end procedure

4.4 Synthesis with pCFGGuidance: pCFG-synth

We hypothesise that, if the LLM did not propose a correct solution, the

correct solution is likely to be roughly in the same “area” as the incorrect

solutions it suggested, and so our synthesis algorithm aims to prioritise

this area when searching for candidate programs. For simplicity, we use

a simple weighted Context-Free Grammar to represent the area of solu-
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tions proposed by the LLM. We then present methods for searching the

space: the first is a probabilistic top-down search, shown in Algorithm 4;

the second is based on an adaptation of the 𝘈∗ algorithm [39, 57], and we

integrate both into CEGIS searches as shown in Algorithm 1. The verifica-

tion phase in Algorithm 1 is implemented via a call to an SMT solver, which

checks, for a candidate solution 𝘧 , whether there exists an input such that

the specification is violated, i.e.,

∃𝘹.¬𝜙[𝘍 ↦ 𝘧 ]

4.4.1 Inferring a Weighted CFG

In this section, we describe how we infer a weighted Context-Free Gram-

mar from the incorrect solutions produced by the large language model.

Definition 1 (Derivations). Given a context-free grammar 𝘎, and a sentence

𝘴, the sentence is in the language of the grammar if 𝘚 →* 𝘴, where 𝘚 is the

start symbol of the grammar. The derivation of 𝘴 from 𝘚 is a sequence of rules

such that 𝘚 𝘳𝟢−→ 𝘴𝟣 𝘳𝟣−→ …𝘴𝘯 𝘳𝘯−→ 𝘴 and 𝘳𝟢…𝘳𝘯 ∈ 𝘙. We denote the derivation of 𝘴
by the sequence of rules 𝘳𝟢, … 𝘳𝘯 as 𝘋𝘴 = {𝘳𝟢, … 𝘳𝘯}. The left-most derivation is a

derivation such that all rules expand the left-most non-terminal symbol in the

sentential form.

From here on in, all derivations are assumed to be the left-most deriv-

ation, and we assume the grammar is unambiguous, i.e., there exists a

single left-most derivation for any sentence in the language.

Given a set of possible programs 𝘱𝘳𝘰𝘨 ∈ ℒ𝘎 generated by the language

model, we calculate a weight for each rule 𝘳𝘪 ∈ 𝘙 as the number of times

that rule appears in the left-most derivations of the programs. That is,

𝘸[𝘳𝘪] = ∑
𝘱𝘳𝘰𝘨𝘪∈𝘱𝘳𝘰𝘨

|𝘳𝘪| ∈ 𝘋𝘱𝘳𝘰𝘨𝘪 , (4.1)
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where |𝘳𝘪| is the number of times 𝘳𝘪 appears in the derivation. For example,

consider Response 1: the weights are calculated as

𝘸[𝘳𝟣] = 𝟥,
𝘸[𝘳𝟤] = 𝟥,
𝘸[𝘳𝟥] = 𝟥,
𝘸[𝘳𝟦] = 𝟦,
𝘸[𝘳𝟧] = 𝟥.

These correspond to the rules from Benchmark 1:

𝘳𝟣 ∶ Start→ (ite StartBool Start Start)

𝘳𝟤 ∶ Start→ vr0

𝘳𝟥 ∶ Start→ vr1

𝘳𝟦 ∶ Start→ vr2

𝘳𝟧 ∶ StartBool→ (>= Start Start).

Probabilistic context-free grammar:

Given a wCFG, we derive a simple pCFG by assuming that the probability

associatedwith a rule 𝘳𝘪 ∶ 𝛼 → 𝛽 is equal to theweight𝘸[𝛼 → 𝛽]of 𝘳𝘪, divided
by

|𝜋[𝛼]| = |𝛼 × (Σ ∪ 𝘝)* ∈ 𝘙|,
i.e., the total number of rules that could be applied to 𝛼. That is

ℙ[𝛼 → 𝛽] = 𝘸[𝛼 → 𝛽]
|𝜋[𝛼]| .

By extension,

ℙΣ[𝛼 → 𝛽] = 𝘸[𝛼 → 𝛽]
|𝜋[𝛼] |
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iff 𝛽 ∈ Σ and 𝟢 otherwise.

4.4.2 Probabilistic Guided Search

The aim of our algorithm is thus to search the area of programs closest

to those with the highest weights in the wCFG, or highest probabilities in

the corresponding pCFG. We adapt and implement two search methods

for doing this: the first is a probabilistic top-down search. To this end, we

first introduce the notion of a grammar tree.

Definition 2 (Grammar tree). We represent the search space as a grammar

tree. Given a context-free grammar 𝘎 = (𝘝, Σ, 𝘙, 𝘚), the graph of sentential

forms, or grammar tree,𝒯(𝘎) defined inductively: 𝘚 is the root of the tree, and
for all 𝘹, 𝘺 ∈ (𝘝 ∪ Σ)* with 𝘹 → 𝘺 and 𝘹 being a node of the tree, then 𝘺 is a

child node of 𝘹.

To implement our probabilistic guided search, we extend this definition

to a probabilistic grammar tree. Given a pCFG, 𝘗𝘎 = (𝘝, Σ, 𝘙, 𝘚, ℙ), a probabil-
istic grammar tree𝒯(𝘗𝘎) is a directed labelled graph as defined before, but

each edge has a corresponding weight𝜔 given by ℙ. We limit the edges to

only those needed for the left-most derivations, and soℰ and𝜔 are defined

as follows:

ℰ = {𝘹𝛼𝘺 𝛼→𝛽−−−−→ 𝘹𝛽𝘺 | 𝛼 → 𝛽 ∈ 𝘙, 𝘹 ∈ Σ*, 𝛼 ∈ 𝘝, 𝛽, 𝘺 ∈ (𝘝 ∪ Σ)*},
𝜔[𝛼 → 𝛽] = ℙ[𝛼 → 𝛽].

Note that this guarantees that, for any node, the sum of the weights on

the edges leaving that node is equal to 𝟣.
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Algorithm 2 Probabilistic top-down enumerator for pCFG-synth
1: procedure ENUMERATE(𝘞𝘎, 𝜙, 𝘤𝘦𝘹 )

2: 𝘱𝘳𝘰𝘨 ← 𝘞𝘎.𝘚
3: 𝘥 ← 𝟢
4: 𝘱𝘳𝘦𝘷𝘪𝘰𝘶𝘴𝘗𝘳𝘰𝘨𝘴 ← ∅
5: 𝘗𝘎 ← BUILDPCFG(𝘞𝘎)
6: while 𝟣 do
7: if 𝘱𝘳𝘰𝘨 ∈ Σ∗ then
8: 𝘱𝘳𝘦𝘷𝘪𝘰𝘶𝘴𝘗𝘳𝘰𝘨𝘴 ← 𝘱𝘳𝘦𝘷𝘪𝘰𝘶𝘴𝘗𝘳𝘰𝘨𝘴 ∪ 𝘱𝘳𝘰𝘨
9: if ∀𝘹⃗ ∈ 𝘤𝘦𝘹. 𝜙(𝘱𝘳𝘰𝘨, 𝘹⃗) then

10: return 𝘱𝘳𝘰𝘨
11: else

12: 𝘱𝘳𝘰𝘨 ← 𝘚
13: 𝘥 ← 𝟢
14: end if

15: end if

16: 𝘱𝘳𝘰𝘨 ← REPLACENONTERMINALS(𝘱𝘳𝘰𝘨, 𝘗𝘎)
17: 𝘥 ← 𝘥 + 𝟣
18: if 𝘥 = 𝘮𝘢𝘹𝘋𝘦𝘱𝘵𝘩 then
19: 𝘱𝘳𝘰𝘨 ← COMPLETEPROGRAM(𝘱𝘳𝘰𝘨, 𝘗𝘎)
20: if 𝘱𝘳𝘰𝘨 ∈ 𝘗𝘳𝘦𝘷𝘪𝘰𝘶𝘴𝘗𝘳𝘰𝘨𝘳𝘢𝘮𝘴 then
21: 𝘱𝘳𝘰𝘨 ← 𝘚
22: 𝘥 ← 𝟢
23: end if

24: end if

25: end while

26: end procedure

We search this grammar tree using a top-down enumerative synthes-
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iser, shown in Algorithm 2. This enumerates possible programs in the

grammar in a top-down manner, expanding non-terminals by randomly

sampling from the categorical distribution over the production rules. That

is, the search algorithm starts by considering the node corresponding to

the start symbol 𝘚. It then chooses the next node by sampling from a cat-

egorical distribution with event probabilities corresponding to the probab-

ilities on the outgoing edges of the current node. The categorical distri-

bution is a generalisation of the Bernoulli distribution and describes the

possible results of a random variable that can take one of 𝘒 possible cat-

egories, with the probability of each category separately specified. Form-

ally, to sample a rule 𝛼 × 𝛽 to apply to a non-terminal symbol 𝛼, we sample

from the distribution:

(𝛼 × 𝛽) ∼ 𝘊𝘢𝘵(|𝜋[𝛼]|, {ℙ[𝜋[𝛼]𝟣], ℙ[𝜋[𝛼]𝟤], …}),

where |𝜋[𝛼]| is the number of rules that could be applied to 𝛼 and 𝜋[𝛼]𝘪 is
the 𝘪𝘵𝘩 of those rules, and {ℙ[𝜋[𝛼]𝟣], ℙ[𝜋[𝛼]𝟤], …} is a vector of probabilities

corresponding to those rules.

We then apply the sampled rule, and repeat theprocess. Weuse𝘱𝘳𝘰𝘨.{𝛼 →
𝛽} to indicate the result of substituting the first occurrence of 𝛼 in a partial

program 𝘱𝘳𝘰𝘨 with 𝛽.
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Algorithm 3 Replace non-terminals and complete program for pCFG-

synth enumerator in Algorithm 2
1: procedure REPLACENONTERMINALS(𝘱𝘳𝘰𝘨, 𝘗𝘎)
2: 𝘕𝘛 ← list of nonterminals in 𝘱𝘳𝘰𝘨
3: for 𝛼 ∈ 𝘕𝘛 do
4: (𝛼 × 𝛽) ∼ 𝘊𝘢𝘵(|𝜋[𝛼]|, {ℙ[𝜋[𝛼]𝟣], ℙ[𝜋[𝛼]𝟤], …}) ▷ Sample from

distribution

5: 𝘱𝘳𝘰𝘨 ← 𝘱𝘳𝘰𝘨.{𝛼 → 𝛽} ▷ apply rule to 𝘱𝘳𝘰𝘨
6: end for

7: return 𝘱𝘳𝘰𝘨
8: end procedure

9: procedure COMPLETEPROGRAM(𝘱𝘳𝘰𝘨, 𝘗𝘎) ▷ Replaces non-terminal

symbols with terminal symbols

10: 𝘕𝘛 ← list of nonterminal symbols in 𝘱𝘳𝘰𝘨
11: for 𝛼 ∈ 𝘕𝘛 do
12: (𝛼 × 𝛽) ∼ 𝘊𝘢𝘵(|𝜋[𝛼]|, {ℙΣ[𝜋[𝛼]𝟣], ℙΣ[𝜋[𝛼]𝟤], …}) ▷ Sample

13: 𝘱𝘳𝘰𝘨 ← 𝘱𝘳𝘰𝘨.{𝘯𝘵 → 𝘯𝘵′} ▷ apply rule to 𝘱𝘳𝘰𝘨
14: end for

15: return 𝘱𝘳𝘰𝘨
16: end procedure

With a naive implementation of this algorithm, the probability of our

algorithm generating any sentence 𝘴 is equal to∏𝘳𝘪∈𝘋𝘴 ℙ[𝘳𝘪], where 𝘋𝘴 is the

left-most derivation of 𝘴. However, this will result in the algorithm generat-

ing the same programs multiple times, so we modify this algorithm in two

ways: First, if we enumerate a complete program that we have seen be-

fore, we discard it; Second, we give a maximum depth limit, and if we are

approaching themaximum depth limit, we sample only from the outgoing

edges that result in complete programs.
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Algorithm 4 pCFG-synth
1: procedure PCFG-SYNTH(𝘱𝘳𝘰𝘮𝘱𝘵𝘴, 𝜙, 𝘎)
2: 𝘤𝘰𝘯𝘷 ← [ ]
3: 𝘱𝘳𝘰𝘨𝘴 ← ∅
4: while 𝘱𝘳𝘰𝘮𝘱𝘵𝘴 ≠ ∅ do

5: 𝘳𝘦𝘴𝘱𝘰𝘯𝘴𝘦 ← LLM(𝘱𝘳𝘰𝘮𝘱𝘵𝘴.𝘱𝘰𝘱(), 𝘤𝘰𝘯𝘷)
6: 𝘤𝘰𝘯𝘷.𝘢𝘱𝘱𝘦𝘯𝘥(𝘳𝘦𝘴𝘱𝘰𝘯𝘴𝘦)
7: 𝘤𝘶𝘳𝘳𝘦𝘯𝘵𝘗𝘳𝘰𝘨 ← EXTRACTPROGRAM(𝘳𝘦𝘴𝘱𝘰𝘯𝘴𝘦)
8: if ∀𝘹⃗ 𝜙(𝘤𝘶𝘳𝘳𝘦𝘯𝘵𝘗𝘳𝘰𝘨, 𝘹⃗) then
9: return 𝘤𝘶𝘳𝘳𝘦𝘯𝘵𝘗𝘳𝘰𝘨

10: else

11: 𝘱𝘳𝘰𝘨𝘴 ← 𝘱𝘳𝘰𝘨𝘴 ∪ 𝘤𝘶𝘳𝘳𝘦𝘯𝘵𝘗𝘳𝘰𝘨
12: end if

13: end while

14: 𝘞 ←WEIGHTCOUNTER(𝘱𝘳𝘰𝘨, 𝘎)
15: 𝘞𝘎 ← (𝘎,𝘞)
16: 𝘱𝘳𝘰𝘨 ← CEGIS(𝘞𝘎, 𝜙)
17: return 𝘱𝘳𝘰𝘨
18: end procedure

4.4.3 Weighted 𝘈∗ Search
We implement a second variation of pCFG-synth using the 𝘈∗ weighted

search algorithm as the underlying enumerator. 𝘈∗ is a search algorithm

that chooses which paths to extend based on minimizing the cost of the

path so far and an estimate of the cost required to extend the path to the

goal, i.e., it expands nodes that minimizes

𝘧 (𝘹) = 𝘤(𝘹) + 𝘨(𝘹),
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where 𝘤(𝘹) is the cost of the path to 𝘹 so far and 𝘨(𝘹) is the estimated cost

of reaching a goal node from 𝘹. This technique was first used for guiding

synthesis by Lee et al. [57], and we adapted the algorithm from their work.

To implement our 𝘈∗ search, we extend the definition of the grammar

tree to aweightedgrammar tree. Given apCFG 𝘗𝘎 = (𝘝, Σ, 𝘙, 𝘚, ℙ), aweighted
grammar tree 𝒯(𝘞𝘎) is a directed labelled graph as defined before, but

each edge has a corresponding weight, given as follows:

𝜔(𝛼 → 𝛽) =
⎧⎪⎨⎪⎩

− log𝟤(ℙ[𝛼 → 𝛽]) if ℙ[𝛼 → 𝛽] > 𝟢,
inf otherwise.

We use the negative log of the probability to ensure that higher weighted

edges correspond to those with very low probabilities.

The 𝘈∗ algorithm, shown in Algorithm 5, relies on two key functions:

first, the function 𝘤(𝘹), which computes the cost of the path so far, and

second, the function 𝘨(𝘹) which estimates the cost to extend the path to a

goal node. Assuming 𝘹 is a sentential form in our language, 𝘤(𝘹) and 𝘨(𝘹)
are given by:

𝘤(𝘹) = ∑
𝘳𝘪∈𝘋𝘹

− log𝟤 (ℙ[𝘳𝘪]) ,

𝘨(𝘹) =
⎧⎪⎨⎪⎩

𝟢 if 𝘹 ∈ Σ∗,
−∑𝘹𝘪∈𝘝 log𝟤 𝘩(𝘹𝘪) otherwise,

where 𝘹𝘪 indicates the 𝘪𝘵𝘩 symbol in 𝘹, and 𝘩 is the upper bound of the

probabilities of expressions that can be derived from 𝘹𝘪, and is calculated

as the fixed point of:

∀𝛼 ∈ 𝘝.𝘩(𝛼) = max𝛼→𝛽∈𝘙(ℙ[𝛼 → 𝛽] × ∏
𝛽𝘪∈𝘝

𝘩(𝛽𝘪)) ,

The function 𝘨(𝘹) can then be thought of as the product of the probability

of each non-terminal symbol in 𝘹 being converted into a terminal symbol.
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Smoothing the probability distributions: Since the 𝘈∗ algorithm will

not enumerate any programs whose derivation uses a rule with zero prob-

ability, we smooth the weighted grammar as follows:

𝘸′[𝛼 → 𝛽] = 𝟣𝟢 × (𝘸[𝛼 → 𝛽] + 𝟣
𝟣𝟢 )

𝛾
,

with 𝛾 = 𝟢.𝟦.
Algorithm 5 𝘈∗ search for pCFG-synth
1: procedure ENUMERATE(𝘗𝘎, 𝜙, 𝘤𝘦𝘹 )

2: 𝘘 = {𝟢, 𝘚} ▷ Priority queue of candidates

3: while 𝘘 ≠ ∅ do

4: (𝘧 , 𝘱𝘳𝘰𝘨) ← 𝘘.𝘱𝘰𝘱() ▷ Remove program with minimal 𝘧
5: if ∀𝘹⃗ ∈ 𝘤𝘦𝘹. 𝜙(𝘱𝘳𝘰𝘨, 𝘹⃗) then
6: return 𝘱𝘳𝘰𝘨
7: end if

8: for (𝘯𝘵 ∈ 𝘱𝘳𝘰𝘨) × 𝘯𝘵′ do
9: if (𝘯𝘵 × 𝘯𝘵′) ∈ 𝘗𝘎.𝘙 then ▷ For all applicable rules

10: 𝘱𝘳𝘰𝘨 ← 𝘱𝘳𝘰𝘨.{𝘯𝘵 → 𝘯𝘵′} ▷ apply rule to 𝘱𝘳𝘰𝘨
11: 𝘘 ← 𝘘 ∪ (𝘤(𝘱𝘳𝘰𝘨) + 𝘨(𝘱𝘳𝘰𝘨), 𝘱𝘳𝘰𝘨)
12: end if

13: end for

14: end while

15: end procedure

4.5 Enumerative Synthesis with an Integrated

LLM (iLLM-synth)

The disadvantage of themethod described in the preceding section is that

the language model cannot benefit from any additional information that
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the enumerator learns during enumeration, as all promptinghappensprior

to starting the enumerative synthesis. In this section, we describe how we

integrate an LLM into an enumerative synthesis algorithm, allowing it to

update a probability distribution over the search grammar and to augment

the grammar with new production rules, as shown in Algorithm 6.
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Algorithm 6 Top-down enumerator for iLLM-synth
1: procedure ENUMERATE(𝘞𝘎, 𝜙, 𝘤𝘦𝘹 )

2: 𝘱𝘳𝘰𝘨 ← 𝘞𝘎.𝘚
3: 𝘥 ← 𝟢; 𝘪 ← 𝟢
4: 𝘗𝘎 ← BUILDPCFG(𝘞𝘎)
5: while 𝟣 do
6: if 𝘱𝘳𝘰𝘨 ∈ Σ∗ then
7: if ∀𝘹⃗ ∈ 𝘤𝘦𝘹. 𝜙(𝘱𝘳𝘰𝘨, 𝘹⃗) then
8: return 𝘱𝘳𝘰𝘨
9: else

10: 𝘱𝘳𝘰𝘨 ← 𝘚
11: 𝘥 ← 𝟢
12: end if

13: end if

14: if 𝘪%𝘯 = 𝟢 then
15: 𝘞𝘎 ← SYNTACTICFEEDBACK(𝘞𝘎, 𝘱𝘳𝘰𝘨, 𝘤𝘦𝘹)
16: 𝘗𝘎 ← BUILDPCFG(𝘞𝘎)
17: end if

18: 𝘱𝘳𝘰𝘨 ← REPLACENONTERMINALS(𝘱𝘳𝘰𝘨, 𝘗𝘎)
19: 𝘥 ← 𝘥 + 𝟣
20: if 𝘥 = 𝘮𝘢𝘹𝘋𝘦𝘱𝘵𝘩 then
21: 𝘱𝘳𝘰𝘨 ← COMPLETEPROGRAM(𝘱𝘳𝘰𝘨, 𝘗𝘎)
22: if 𝘱𝘳𝘰𝘨 ∈ 𝘗𝘳𝘦𝘷𝘪𝘰𝘶𝘴𝘗𝘳𝘰𝘨𝘳𝘢𝘮𝘴 then
23: 𝘱𝘳𝘰𝘨 ← 𝘚
24: 𝘥 ← 𝟢
25: end if

26: end if

27: 𝘪 ← 𝘪 + 𝟣
28: end while

29: end procedure
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Algorithm 7 𝘈∗ search for iLLM-synth
1: procedure ENUMERATE(𝘗𝘎, 𝜙, 𝘤𝘦𝘹 )

2: 𝘘 = {𝟢, 𝘚} ▷ Priority queue of candidates

3: 𝘪 ← 𝟢
4: while 𝘘 ≠ ∅ do

5: (𝘧 , 𝘱𝘳𝘰𝘨) ← 𝘘.𝘱𝘰𝘱() ▷ Remove program with minimal 𝘧
6: if 𝘱𝘳𝘰𝘨 ∈ Σ* then
7: if ∀𝘹⃗ ∈ 𝘤𝘦𝘹. 𝜙(𝘱𝘳𝘰𝘨, 𝘹⃗) then
8: return 𝘱𝘳𝘰𝘨
9: end if

10: end if

11: if 𝘪%𝘯 = 𝟢 then
12: 𝘞𝘎 ← SYNTACTICFEEDBACK(𝘞𝘎, 𝘱𝘳𝘰𝘨, 𝘤𝘦𝘹)
13: 𝘗𝘎 ← BUILDPCFG(𝘞𝘎)
14: end if

15: for (𝘯𝘵 ∈ 𝘱𝘳𝘰𝘨) × 𝘯𝘵′ do
16: if (𝘯𝘵 × 𝘯𝘵′) ∈ 𝘗𝘎.𝘙 then ▷ For all applicable rules

17: 𝘱𝘳𝘰𝘨 ← 𝘱𝘳𝘰𝘨.{𝘯𝘵 → 𝘯𝘵′} ▷ apply rule to 𝘱𝘳𝘰𝘨
18: 𝘘 ← 𝘘 ∪ (𝘤(𝘱𝘳𝘰𝘨) + 𝘨(𝘱𝘳𝘰𝘨), 𝘱𝘳𝘰𝘨)
19: end if

20: end for

21: 𝘪 ← 𝘪 + 𝟣
22: end while

23: end procedure
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Algorithm 8 Syntactic feedback generator in Algorithm 6,7.
1: procedure SYNTACTICFEEDBACK(𝘞𝘎, 𝘱𝘳𝘰𝘨, 𝘤𝘦𝘹)
2: 𝘱𝘳𝘰𝘮𝘱𝘵 ← GENERATEPROMPT(𝘱𝘳𝘰𝘨, 𝘤𝘦𝘹)
3: 𝘳𝘦𝘴𝘱𝘰𝘯𝘴𝘦 ← LLM(𝘱𝘳𝘰𝘮𝘱𝘵)
4: 𝘤𝘢𝘯𝘥𝘪𝘥𝘢𝘵𝘦 ← EXTRACTPROGRAM(𝘳𝘦𝘴𝘱𝘰𝘯𝘴𝘦)
5: 𝘞𝘎.𝘞 ← 𝘞𝘎.𝘞 +WEIGHTCOUNTER(𝘳𝘦𝘴𝘱𝘰𝘯𝘴𝘦)
6: 𝘞𝘎.𝘙 ← 𝘞𝘎.𝘙 ∪ (𝘞𝘎.𝘚 × 𝘳𝘦𝘴𝘱𝘰𝘯𝘴𝘦)
7: return 𝘞𝘎

8: end procedure

4.5.1 Integrated Prompting

We construct a prompt that asks the LLM to provide helper functions to as-

sist a student inwriting SMT-lib code. Wegive the LLM the constraints from

the target synthesis problem and the partially complete program at the

point the enumerator calls the LLM. If the LLM fails to solve the problem

with this prompt, we later add the most recently failed candidate solution

and the counterexample it failed on. These prompts are shorter than the

prompts in those used in Section 4.3 and, therefore, cheaper and faster to

run. An example Prompt 8 is as follows:

You are teaching a student to write SMT-LIB. The student

must write a function that satisfies the following

constraints:

(constraint (>= (function x y z) x))

(constraint (>= (function x y z) y))

(constraint (>= (function x y z) z))

(constraint (or (= x (function x y z)) (or (= y (

function x y z)) (= z (function x y z)))))

So far, the student has written this code:
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(define-fun function ((x Int) (y Int) (z Int)) Int

(ite ?? ?? ??)

Can you suggest some helper functions for the student to

use to complete this code and replace the ??

You must print only the code and nothing else.

Prompt 8: Integrated prompt for Benchmark 1.

4.5.2 Updating the Weighted Grammar

We initialise our algorithm with a weight of 𝟣 for each rule in the gram-

mar. We use the LLM-generated helper functions to augment the gram-

mar in the following way: first, any helper functions will be added directly

as new production rules to replace non-terminals of the correct type in

the grammar. That is, if the LLM proposes the defined function 𝘧 , a set

of rules of the form 𝘝𝘪 × 𝘧 are added to the grammar, for all non-terminal

symbols 𝘝𝘪 such that this rule results in syntactically correct expressions,

i.e., 𝘝𝘪 must be of the same type as the co-domain of 𝘧 . This is sufficient

to guarantee syntactically correct expressions because any functions pro-

posed by the LLM that are otherwise not well-formed, e.g., they reference

variables that are not defined, are discarded. Any new rules are given a

weight equal to the average of all the current weights for rules relevant

to that non-terminal. The response parser also updates the weights of all

existing rules in the grammar, according to Equation 4.1, calculated from

the set of helper functions the LLM proposed.
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4.5.3 Integrating Syntactic Feedback into Enumerative

Search

We integrate the syntactic feedback generator into the probabilistic enu-

merator, shown in Algorithm 4, and into the 𝘈∗ weighted search, as shown

in Algorithm 7. Both search algorithms call the syntactic feedback gener-

ator every 𝘯𝘵𝘩 iteration, where 𝘯 is a heuristic used to ensure the LLM is

not called with the same partial program repeatedly and that the search

algorithmhas time to exploit the information obtained from the LLM. Note

that, when the probabilistic grammar is updated, the 𝘩 values must be re-

calculated in the 𝘈* search.

4.6 Evaluation

We evaluate our approaches on benchmarks taken from the SyGuS com-

petition [4], each with a grammar that corresponds to the full language

of their respective theories. We evaluate across three SyGuS categories:

Bit-Vector (BV), Linear Integer Arithmetic (LIA), and Invariants (INV). We

evaluate both the LLM as a stand-alone synthesiser, the probabilistic enu-

merator, and 𝘈∗ implementations with a pre-trained pCFG and the enumer-

ator with a pre-trained syntactic oracle. We utilise OpenAI’s GPT-3.5-turbo-

16k model to generate the prompts used for the pre-trained pCFG and the

standalone LLM evaluation because this model supports longer prompts.

We configure this with a temperature of 𝟣.𝟢, conversation-stylemessaging.

We use GPT-3.5-turbo for iLLM-synth, which has shorter prompts. We use

the 𝟦.𝟪.𝟣𝟤 64-bit version of Z3 for verification and CVC5 version 𝟣.𝟣.𝟢 as a

baseline.
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BV (384) LIA (87) INV (138) Total (609)

Methods # time(s) # time(s) # time(s) # %

LLM only 137 13.5 54 7.10 112 29.2 303 49.8%

𝘦-pCFG-synth ⋄ 196.0 48.3 24.0 40.0 25.4 100.5 245.4 40.3%

𝘈*-pCFG-synth 262 60.1 35 72.7 25 99.7 322 52.9%

LLM ∪ 𝘦-pCFG-synth 255.0 37.0 64.0 17.20 117.7 40.4 436.7 71.7%

LLM ∪ 𝘈*-pCFG-synth 305.0 35.0 65.0 18.1 118.0 33.6 488.0 80.1%

𝘦-iLLM-synth ⋄ 241.0 88.2 63.4 9.3 65.3 25.4 370.0 60.8%

𝘈*-iLLM-synth ⋄ 272.3 24.6 68.3 20.8 67.3 43.6 408.0 67.0%

enumerator⋄ 142.7 7.2 25.0 1.53 21.0 3.2 188.7 31.0%

𝘈* 253.0 25.4 34.0 73.19 22.0 31.1 309.0 50.7%

CVC5 292.0 17.1 43.0 19.53 80.0 23.6 415.0 68.1%

Table 4.1: Summary of results. We run nondeterministic results, marked ⋄,

𝟥 times and report the average (standard deviation is less than 𝟣% for all

methods except the baseline enumerator for the number of benchmarks

solved). We highlight the best result in terms of the number of bench-

marks solved in each category. The timeout is 𝟨𝟢𝟢s. Times in italic indicate

results that may vary depending on the load on the OpenAI servers. The

times for pCFG-synth do not include the time to call the standalone LLM

and generate the wCFGs, but these are included in the times for LLM ∪
pCFG-synth.

4.6.1 Evaluation of the Stand-Alone LLM

We prompt the LLM until it produces up to 6 complete synthesis attempts

per benchmark, with the results reported in line 1 of Table 4.1. Any in-

complete solutions are discarded (i.e., functions without a function body),

although these are relatively rare, and we discard only 𝟢.𝟪𝟧% of programs

we generate. In total, the LLM solves 𝟦𝟫% of benchmarks, performing bet-

ter in the invariant and LIA categories than the bit-vector category. On
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average, for the benchmarks it can solve, it takes 𝟦 attempts to produce a

correct solution. The average time for the LLM to generate a program is

approximately 𝟧𝘴 using the OpenAI Python API. However, this is depend-

ent on OpenAI, and we report these times only as estimates in Table 4.1.

We allow the LLM only 𝟨 attempts to solve the problem since, by the 𝟨𝘵𝘩
iteration, the number of new solutions the LLM finds has dropped to < 𝟤%
(and it finds 𝟢 new solutions for LIA).

4.6.2 Evaluation of pCFG-synth.

We evaluate both variants of pCFG-synth (with the probabilistic enumer-

ator, denoted 𝘦-pCFG-synth, and with 𝘈*, denoted 𝘈*-pCFG-synth) using

thewCFGobtained from the LLM. As abaseline, we run the samealgorithms

assigning a weight of 𝟣 to every rule in the grammar (referred to as “enu-

merator” and𝘈* respectively in the results). pCFG-synth increases the num-

ber of benchmarks the probabilistic enumerator can solve by 𝟥𝟢%, but

barely increases the number 𝘈* can solve, although the exact sets of bench-

marks which 𝘈* and 𝘈*-pCFG-synth solve do differ significantly. We hypo-

thesise that this is because 𝘈*, guided by the pCFG with equal weights for

all rules, is very good at generating short solutions, and 𝘈*-pCFG-synth is

worse at short solutions but better at generating more complex solutions

guided by the pCFG.

We also report the results obtained by the union of the LLM alone and

pCFG-synth, i.e., if the LLM solves the benchmark, we do not deploy the

enumerator. This is a more realistic representation of how such a tech-

nique would be used and demonstrates that the enumerator can over-

come shortcomings of the LLMand vice versa. The union of the LLMand𝘈*-

pCFG-synth substantially outperforms CVC5, solving 𝟩𝟥more benchmarks.



58 Chapter 4. Guiding Enumerative Program Synthesis with LLMs

4.6.3 Evaluating iLLM-synth.

Weevaluate both variants of iLLM-synth, denoted 𝘦-iLLM-synth and𝘈∗-iLLM-

synth. We set the temperature for 𝘦-iLLM-synth to 𝟣, but find that 𝘈∗-iLLM-

synth performs better with a temperature set to 𝟢, whichwe hypothesise is

due to the determinism of the algorithm. We find that iLLM-synth outper-

forms the enumerator of pCFG-synth, and gets close to the performance

of CVC5, suggesting that the ability to prompt the LLM with additional in-

formation obtained during enumeration allows the LLM to provide better

guidance to the enumerator, as well as to more frequently propose use-

ful helper functions. We do find that iLLM-synth performs less well than

methods incorporating the stand-alone LLM on the invariant benchmarks,

which is likely because the invariant benchmarks benefit from the custom

prompting technique described in Section 4.3.1. Future work would in-

volve identifying further categories of benchmarks that benefit from cus-

tom prompts. It is worth noting that neither the probabilistic enumerator

nor the 𝘈* implementation includes many of the optimisations that ma-

ture solvers such as CVC5 implement, and yet, by integrating these simple

algorithms with syntactic feedback from an LLM, they have achieved per-

formance on par with the state-of-the-art enumerative solver.

4.6.4 Failure Modes.

We manually examine a sample of the stand-alone LLM errors and give

examples of such errors. Broadly, we identify the following common fail-

ures: Misunderstandings due to complex constraints (the LLM suggests

solutions that are not syntactically close to the correct solution); simple

syntactic errors, e.g., applying non-commutative operators to operands in

the wrong order, concatenating bit-vectors in the wrong order or hallu-
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cinating operations; simple semantic errors, e.g., operators in the wrong

order. Errors in the first category are not helpful to our guided enumerat-

ors, but the remaining categories of error still allow us to generate a wCFG

that is likely to indicate the area of the solution. The benchmarks that CVC5

can solve and our enumerative techniques cannot, tend to have complex

constraints and relatively short solutions that use less common operators

(e.g., bitwise operators). We hypothesise that the LLM guidance becomes

an impediment to the enumerator in these scenarios. In contrast, the av-

erage length (in characters) of a solution for benchmarks uniquely solved

by the LLM is 4.7x the length of a solution for benchmarks uniquely solved

by CVC5. Using the LLM to guide the enumerators increases the length of

solutions that the enumerators can find, for instance, all solutions found

by𝘈∗ contain fewer than 𝟥operators, but𝘈∗-iLLM-synth finds solutionswith

greater than 𝟤𝟢 operators.

Completing verification conditions:

In the initial phase of our research, we constructed prompts based on ask-

ing the LLM to complete an SMT-LIB file that encodes the verification condi-

tions for the synthesis problem, so that it would be unsatisfiable. Consider

the following example:

1 (set-logic LIA)

2 (synth-fun function ((x Int) (y Int)) Int)

3 (declare-var x Int)

4 (declare-var y Int)

5 (constraint (>= (function x y) x))

6 (constraint (>= (function x y) y))

7 (constraint (or (= x (function x y)) (= y (function x y)

)))
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8 (check-synth)

Benchmark 2: A SyGuS specification that asks for a program that returns

𝘹 if 𝘹 − 𝘺 ≥ 𝟢 otherwise returns 𝘺.

The corresponding prompt structure is as follows:

; Complete the following SMT file so that it is

unsatisfiable

(set-logic LIA)

(declare-fun x () Int)

(declare-fun y () Int)

(assert (or (not (>= (function x y) x))

(not (>= (function x y) y))

(not (or (= x (function x y)) (= y (function

x y))))))

(check-sat)

(define-fun function ((x Int) (y Int)) Int

(

Prompt 9: LLM direct fill-in task.

Here, the LLM’s task was to fill in missing information. This initial ap-

proach did not yield satisfactory results.

Fine-tuning:

Weexperimentedwith fine-tuning theCuriemodel on a subset of the bench-

marks, using \n;###\n for prompt endings and \n;END for completion

markers. An example structure for fine-tuning from the training set is

provided here:

{"prompt":
" (set-logic BV)\n(declare-fun x () (_ BitVec 32))\n
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(define-fun hd03 ((x (_ BitVec 32))) (_ BitVec 32)\n
(bvand x (bvneg x)))\n
(assert (or (not (= (hd03 x) (f x)))))\n
(check-sat)\n
; define function f\n
(define-fun f ((x (_ BitVec 32))) (_ BitVec 32)\n
;###\n",

"completion":
" (bvand x (bvneg x))) \n;END"}

Post-adjustment, the Curie model was evaluated using a smaller test

set, excluding invariant synthesis, and achieved a 25%success rate in bench-

marks. Further refinements to the training set, such as expanding let ex-

pressions, did not improve results.

Synthesis via Python code:

We experimented with asking the LLM to write solutions in Python and

then translate the given solution into an SMT-LIB function.

(set-logic LIA)

(synth-fun function ((x Int) (y Int)) Int))

(declare-var x Int)

(declare-var y Int)

(constraint (>= (function x y) x))

(constraint (>= (function x y) y))

(constraint (or (= x (function x y)) (= y (function x y)

)))

(check-synth)

Write a Python method function. Requirements: 1. No

built-in Python functions. 2. Adhere to the above SMT
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-LIB constraints.

Prompt 10: Prompt for function shown in Benchmark 2.

Upon the LLM generating a possible solution, we employed an addi-

tional prompt to convert the Python method into the SMT-LIB function

format:

Translate the Python method into SMT-LIB code function,

focusing solely on the SMT-LIB format.

Prompt 11: Request for converting Python to SMT-LIB code.

This did not work well, as the LLM frequently failed to translate Python

into SMT-LIB accurately.

Prompt Method Solved %

Lisp 22/50 44%

Python 19/50 38%

Table 4.2: Comparative analysis of prompt methods: efficacy in solving

benchmarks with Lisp, and Python prompts.

Table 4.2 presents a comparative study of various prompting methods

in solving benchmarks, highlighting the effectiveness of Lisp, and Python-

based prompts. The results indicate a notable enhancement in problem-

solving efficiency when using Lisp prompts.

Unravelling LLM’s shortcomings:

LLM often encounters difficulties with benchmarks characterized by mul-

tiple constraints involving longer derivations. These predefined functions

contribute to the complexity and length of each constraint, posing a signi-

ficant challenge for the LLM. For example:
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1 (constraint (functionA (and (= a 0) (= 0 d)) (= 0 (

functionB a d))))

2 (constraint (functionA (functionD (= g (functionB a d))

(>= a d) (= b (+ a 1)) (= h (+ g 1)) (= i (+ h 1)))

(= i (functionB b d))))

3 (constraint (functionA (functionD (= g (functionB a d))

(>= a d) (= e (+ d 1)) (= h (+ g 1)) (or (and (< a e)

(= j (+ h 1))) (and (>= a e) (= j h)))) (= j (

functionB a e))))

4 (constraint (functionA (functionC (= g (functionB a d))

(< a d) (= b (+ a 1)) (= h (+ g 1))) (= h (functionB

b d))))

5 (constraint (functionA (functionD (= g (functionB a d))

(< a d) (= e (+ d 1)) (= h (+ g 1)) (= i (+ h 1))) (=

i (functionB a e))))

Benchmark 3: Multiple long constraints for functionB.

If we expand the function applications, we get Benchmark 4, which still

contains long derivations.

1 (constraint (or (not (and (= a 0) (= 0 d))) (= 0 (

functionB a d))))

2 (constraint (or (not (and (and (and (= g (functionB a d)

) (>= a d)) (= b (+ a 1))) (= h (+ g 1))) (= i (+ h

1))) (= i (functionB b d))))

3 (constraint (or (not (and (and (and (= g (functionB a d)

) (>= a d)) (= e (+ d 1))) (= h (+ g 1))) (or (and (<

a e) (= j (+ h 1))) (and (>= a e) (= j h)))) (= j (

functionB a e))))

4 (constraint (or (not (and (and (= g (functionB a d)) (<

a d)) (= b (+ a 1))) (= h (+ g 1))) (= h (functionB b
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d))))

5 (constraint (or (not (and (and (and (= g (functionB a d)

) (< a d)) (= e (+ d 1))) (= h (+ g 1))) (= i (+ h 1)

)) (= i (functionB a e))))

Benchmark 4: Expanded constraints for functionB.

Such constraints are intricate and challenging for the LLM to under-

stand accurately, making it difficult to produce a response satisfying the

specification. The LLM produced a program that contains functionB it-

self. However, the pCFG-synth and iLLM-synth can solve the problem with

the distribution of rules, whereas the state-of-the-art solver CVC5 cannot.

In contrast, the LLM exhibits a better understanding of benchmarks

with shorter derivation for each constraint, such as:

1 (constraint (functionA (and (< a 100) (< c 100)) (

functionB a b c)))

2 (constraint (functionA (functionC (functionB a b c) (< a

100) (< 100 c) (functionA vr4 (and (= e (+ a 1)) (=

f c))) (functionA (not d) (and (= e (- a 1)) (= f (-

c 1))))) (functionB e b f)))

3 (constraint (functionA (and (functionB a b c) (not (and

(< a 100) (< 100 c)))) (or (>= a 100) (<= c 100))))

Benchmark 5: Shorter derivations in constraints for functionB.

These constraints are less complex, making them more accessible for the

LLM to process.

Another challenge arises with benchmarks that necessitate very short

solutions. For instance, a benchmark requiring a solution like:

(define-fun function ((a Int)) Bool true)

Response 3: A concise program unattainable by LLM.
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In these cases, the LLM tends to propose lengthier solutions, failing to

align with the benchmark’s requirement for conciseness. This pattern is

evident across all 𝟨 attempts made by the LLM.

Shuffling operator or variable:

Below is an example benchmark for finding f:

1 (set-logic BV)

2 (define-fun function ((x (_ BitVec 32))) (_ BitVec 32)

3 (bvor x (bvadd x #x00000001)))

4 (declare-var x (_ BitVec 32))

5 (constraint (= (function x) (f x)))

6 (check-synth)

Benchmark 6: A SyGuS specification asking for a Bit-Vector program.

LLM failed to provide this exact solution but contributed significantly

by suggesting a similar program with the correct operators, albeit in an

incorrect order. The program suggested by the LLM is:

(define-fun function ((x (_ BitVec 32))) (_ BitVec 32) (

bvor x (bvadd x (concat #b1 (_ bv0 31))))).

Response 4: Correct operators with incorrect order.

In this program, the LLM correctly identifies the use of a bvor and

bvadd but misplaces the components of the bit-vector representing the

number 𝟣. The correct solution requires swapping the positions of #b1
and (_ bv0 31) in the concatenation.

This case demonstrates that while the LLM may not always generate a

completely accurate solution, it can provide valuable insights or compon-

ents of a solution. The enumerator, guided by the distribution of rules

inferred from the LLM-generated programs, can utilise these insights to
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reach a correct solution.

Mistaken conditional statements:

In situations where an individual constructs an if-then-else statement but

makes an error in defining the correct condition, we can identify this issue

through a specific example of finding function:

1 (constraint (>= (function a b c d e f g) a))

2 (constraint (>= (function a b c d e f g) b))

3 (constraint (>= (function a b c d e f g) c))

4 (constraint (>= (function a b c d e f g) d))

5 (constraint (>= (function a b c d e f g) e))

6 (constraint (>= (function a b c d e f g) f))

7 (constraint (>= (function a b c d e f g) g))

8 (constraint (or (= a (function a b c d e f g)) (or (= b

(function a b c d e f g)) (or (= c (function a b c d

e f g)) (or (= d (function a b c d e f g)) (or (= e (

function a b c d e f g)) (or (= f (function a b c d e

f g)) (= g (function a b c d e f g)))))))))

Benchmark 7: SyGuS specification for constructing a program contains

several 𝘪𝘧 -𝘵𝘩𝘦𝘯-𝘦𝘭𝘴𝘦 Operators.

In this scenario, the accurate and appropriate solution should be

1 (define-fun function ((a Int) (b Int) (c Int) (d Int) (e

Int) (f Int) (g Int)) Int

2 (ite (and (>= a b) (>= a c) (>= a d) (>= a e) (>= a

f) (>= a g)) a

3 (ite (and (>= b a) (>= b c) (>= b d) (>= b e)

(>= b f) (>= b g)) b

4 (ite (and (>= c a) (>= c b) (>= c d) (>= c e



4.6. Evaluation 67

) (>= c f) (>= c g)) c

5 (ite (and (>= d a) (>= d b) (>= d c)

(>= d e) (>= d f) (>= d g)) d

6 (ite (and (>= e a) (>= e b) (>= e

c) (>= e d) (>= e f) (>= e g))

e

7 (ite (and (>= f a) (>= f b)

(>= f c) (>= f d) (>= f e)

(>= f g)) f g)))))))

Program 4.19: Solution program for Benchmark 7.

However, the LLM generates:

(define-fun function ((vr0 Int) (b Int) (c Int) (d Int)

(e Int) (f Int) (g Int)) Int

(ite (and (<= vr0 b) (<= b c) (<= c d) (<= d e) (<= e

f) (<= f g)) g

(ite (and (<= vr0 b) (<= b c) (<= c d) (<= d e)

(<= e f)) f

(ite (and (<= vr0 b) (<= b c) (<= c d) (<= d

e)) e

(ite (and (<= vr0 b) (<= b c) (<= c d))

d

(ite (and (<= vr0 b) (<= b c)) c

(ite (<= vr0 b) b vr0)))))))

Response 5: Program generated by LLM for Example 7.

, which, although sharing a similar structure, inaccurately defines the con-

ditions.
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Unorthodox nesting and syntax errors:

A common problem occurs when LLM endeavours to construct a nested if-

then-else statement. However, their nesting level is insufficient, and they

also introduce operators incompatible with SyGuS. For instance, while the

correct solution should involve a properly nested if-then-else structure

1 (define-fun function ((a Int) (b Int)) Int

2 (ite (and (>= (+ a b) 2)

3 (ite (>= (+ a b) 3)

4 (ite (>= (+ a b) 4)

5 (ite (>= (+ a b) 5)

6 (or (>= (+ a b) 6)

7 (= a (+ 11 (∗ (- 1) b))))

8 (= a (+ 1 (∗ (- 1) b))))

9 (= a (+ 3 (∗ (- 1) b))))

10 (= a (+ 1 (∗ (- 1) b)))))

11 (+ (- 60) (∗ 60 a) (∗ 60 b))

12 (ite (ite (>= (+ a b) 2)

13 (and (>= (+ a b) 3)

14 (ite (>= (+ a b) 4)

15 (ite (>= (+ a b) 5)

16 (or (= a (+ 11 (∗ (- 1) b)))

17 (not (>= (+ a b) 6)))

18 (= a (+ (- 9) (∗ (- 1) b))))

19 (= a (+ (- 1) (∗ (- 1) b)))))

20 (= a (+ (- 1) (∗ (- 1) b))))

21 (+ 50 (∗ 50 a) (∗ 50 b))

22 (ite (and (>= (+ a b) 2)

23 (ite (>= (+ a b) 3)

24 (ite (>= (+ a b) 4)
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25 (or (not (>= (+ a b) 5))

26 (ite (>= (+ a b) 6)

27 (= a (+ 1 (∗ (- 1) b)))

28 (= a (+ (- 9) (∗ (- 1) b))))

)

29 (= a (+ 7 (∗ (- 1) b))))

30 (= a (+ 1 (∗ (- 1) b)))))

31 (+ (- 40) (∗ 40 a) (∗ 40 b))

32 (ite (and (>= (+ a b) 2)

33 (ite (>= (+ a b) 3)

34 (ite (>= (+ a b) 4)

35 (or (>= (+ a b) 6)

36 (not (>= (+ a b) 5))

37 (not (= a (+ (- 1) (∗ (- 1)

b)))))

38 (not (= a (+ (- 1) (∗ (- 1) b)))

))

39 (not (= a (+ 3 (∗ (- 1) b))))))

40 (+ (- 20) (∗ 20 a) (∗ 20 b))

41 (+ 10 (∗ 10 a) (∗ 10 b)))))))

Program 4.21: Solution program with nested 𝘪𝘧 -𝘵𝘩𝘦𝘯-𝘦𝘭𝘴𝘦 operators.

The LLM generates the program below Program 4.22, which does not

achieve the required nesting level and erroneously incorporates operators.

For example, if is syntactically incorrect in the SyGuS framework.

1 (define-fun function ((a Int) (b Int)) Int

2 (ite (<= (functionA a b) 1)

3 (if (= (functionA a b) 1)

4 (functionG (functionB a b 1))

5 0)
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6 (ite (<= (functionA a b) 2)

7 (if (= (functionA a b) 2)

8 (functionG (functionH (functionB a b (-

1))))

9 0)

10 (ite (<= (functionA a b) 3)

11 (if (= (functionA a b) 3)

12 (functionG (functionC (functionB a b

1)))

13 0)

14 (ite (<= (functionA a b) 4)

15 (if (= (functionA a b) 4)

16 (functionG (functionD (functionB

a b (- 1))))

17 0)

18 (ite (<= (functionA a b) 5)

19 (if (= (functionA a b) 5)

20 (functionG (functionE (

functionB a b 1)))

21 0)

22 (functionG (functionF (functionB

a b (- 1))))))))))

Program 4.22: Program with insufficient nesting and syntactic

incompatibilities.

4.6.5 Programming-by-Example.

We omit benchmarks from the syntax-guided synthesis competition tracks

that solely focus on programming-by-example (PBE)(i.e., specifying a pro-
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gram only using input-output examples and a grammar). We omit these

benchmarks for two reasons: first, since training data is trivial to generate

for PBE, unlike general logical specifications [85], there aremany other suc-

cessful machine-learning driven synthesis techniques that can be trained

for PBE techniques[11]. Second, our approaches are effective when the

LLM can provide guidance to the enumerator, which comes from prompt-

ing the LLM with the logical constraints that form the specification. If we

prompt the LLM using the prompting techniques outlined in Section 4.3.1

with a PBE specification, it tends to provide a solution in the form of a large

case split over the input examples, which returns specific outputs for each

input. This is not useful for guiding the enumerator because the LLM over-

fits to the examples in the specification and fails to provide any bias to-

wards operators other than “if-then-else”. To extend our approach to PBE,

we would need to use a prompting approach tailored to input-output ex-

amples.

4.7 Threats to Validity

LLM Training Data: The SyGuS problems are publicly available andmight

be part of the training data for the LLM we use, although we believe

the solutions were not publicly available at the time of training.

Reproducibility: These experiments useGPT-3.5, an LLMavailable via API

from OpenAI. We have recorded the responses and parameters gen-

erated by the LLM in all experiments, but these may not be reprodu-

cible [82] since GPT-3.5 behaves non-deterministically in a way that

cannot be seeded. However, we observe very small variations in the

number of benchmarks solved in our experiments (although greater

variation in the average solving time). It is also possible that OpenAI
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deprecates this LLM and its associated API or updates it and changes

its behaviour in the future.

Benchmark Bias: The benchmark set is taken from the SyGuS competi-

tion [4], but may not be very diverse and may not be representative

of synthesis problems “in the wild”. Nevertheless, this is a standard

benchmark set used in many formal synthesis papers.

Hyperparameters: We have not invested time in parameter tuning, and

better or worse results may be obtained by changing the LLM para-

meters (temperature), or adjusting the weights, enumeration depth,

andheuristic functions in theprobabilistic enumerator and𝘈* algorithms.



Chapter 5

Guided Tensor Lifting

The material in this chapter comes from paper Guided Tensor Lifting [61],

published at PLDI 2025. I designed and implemented the framework, al-

gorithmsand carried out the evaluation. The verification componentswere

developed jointly with José Wesley de Souza Magalhães and Alexander

Brauckmann.

5.1 Introduction

Building on the probabilistic-guidance framework introduced in Chapter 4,

this chapter explores how to transplant those ideas into a very different

setting, automatically lifting dense tensor kernels from C into the TACO

domain-specific language (DSL).

Recent years have witnessed rapid growth in the number and import-

ance ofmachine learningworkloads. While used in a diverse number of ap-

plications, their fundamental building block is tensor contractions, which

dominate execution time. For this reason, a large number of specialised

tensor domain-specific languages (DSLs) have appeared, capable of pro-

ducing high-performance code ([52, 38, 86, 1, 18, 37]). Their associated

73
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compilers are capable of extracting domain-specific information to exploit

hardware-specific features and vendor-tuned libraries.

To access such performance, applications have to be written in one

or more high-level DSLs. While this is acceptable for new applications,

it means that existing workloads written in standard programming lan-

guages are unable to directly access a platform’s potential performance.

While manually rewriting a program to a DSL may be a worthwhile cost, it

becomes a serious impediment if it has to be repeated for new emerging

DSLs. This problem of manual porting or lifting existing code to higher-

level DSLs has been identified by several recent works that propose auto-

mated techniques. Themost popular approaches use varying forms of pro-

gram synthesis, where a DSLs space is searched for a matching program

([49, 98, 70]). However, program synthesis is expensive and struggles to

scale to multi-dimensional tensor workloads.

To overcome this scalability issue, existing schemes rely on aggressive

hard-wired heuristics that trade-off coverage for time. In [70], domain-

specific polyhedral analysis is used to prune the search space. This works

well on low-dimensional problems but suffers from exponential growth.

Similarly, in [92], the user provides a template to aid search. While narrowly

effective, such heuristics limit portability and are a limit to generalisation.

A completely different approach is to use neural machine translation

based on large language models (LLMs). They have proved highly suc-

cessful with a number of program generation tasks [25, 30]. They are fast

and scale with program complexity, but unfortunately, they are inaccurate.

What we would like is to combine the power of LLMs with the accuracy of

synthesis.

This chapter explores a novel combination of LLMs and program syn-

thesis. It uses an LLM to suggest a number of possible solutions. It then
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builds a probabilistic grammar of templates, based on the proposed solu-

tions, and then uses this grammar to drive an enumerative search of gram-

mar templates. Our approach, termed STAGG (Synthesis of Tensor Algebra

Guided by Grammars) is able to outperform all existing approaches. It

achieves 𝟫𝟫% lifting accuracy on apre-existing large-scale benchmark suite

of dense tensor algebra and is able to do this without any pre-wired heur-

istics.

Contributions:

This chapter makes the following contributions:

• Two novel synthesis algorithms that combine LLM guesses and pro-

gram synthesis to scalably lift dense tensor code.

• A large-scale evaluation of state-of-the-art tensor program lifting.

• Greater coverage than existing techniques.

5.2 Motivation

The tensor DSL we target in this chapter is TACO [52]. Whilst TACO may

be best known for sparse computation, it also gives superior performance

over dense codeonmulticores andGPUs. Although recentwork has tackled

matching certain sparse computation to specific high-performanceAPIs [55,

35], this chapter focuses solely on lifting legacy dense tensor computation

to a high-level programming language [51].

TACO syntax is based on Einstein summation (einsum) notation, a lan-

guage for representing linear algebra operations using indexing expres-

sions. The TACO compiler takes a tensor expression as input and gener-

ates highly optimised kernels. TACO-generated code exploits the paral-

lel nature of both dense tensor algebra operations and multi-core/GPU
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architectures. It uses domain-specific knowledge to optimise and auto-

parallelise, which related work has reported results in average speedups

of 𝟣.𝟪× and 𝟤𝟦.𝟣× over the original program on CPUs and GPUs respect-

ively [70].

Einsum notation:

TACO supports einsum notation, as do other frameworks including Py-

Torch [86], Halide [94]. While these alternatives may support a larger set

of operations, targeting TACO allows a direct apples-to-apples comparison

against prior work [70, 93].

Einsum expressions consist of a sequence of indexing variables, each

one representing an iterator over a different tensor dimension. The tradi-

tional einsum notation expresses tensor multiplication and implicit sum-

mation on the indices that are absent in the output tensor. TACO uses an

extended version of the original notation that also supports subtraction

and division. Unlike other einsum-based frameworks such as the NumPy

[38] einsum API, the tensors in TACO programsmust be explicitly declared.

Figure 5.4 shows the TACO grammar addressed in this chapter.

Problem statement:

Formally, given a legacy program 𝘱𝘴, written in a low-level language

such as C, STAGG aims to find an equivalent program 𝘱𝘵 written in TACO,

that meets the specification ∀𝘹⃗.𝘱𝘴(𝘹⃗) = 𝘱𝘵(𝘹⃗), where 𝘹⃗ is a vector of input

arguments. That is, 𝘱𝘵 produces the same output as 𝘱𝘴 on all possible in-

puts.

Example:

The synthesis task that STAGG solves is to synthesise a TACO program

𝘱𝘵 such that∀𝘹⃗.𝘱𝘴(𝘹⃗) = 𝘱𝘵(𝘹⃗), where 𝘹⃗ is a vector of inputs, in this case Mat1,
Mat2, Result. We now illustrate this approach on the example input C
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program shown in Benchmark 8.

Given this program, STAGG first queries a large language model to ask

for a set of candidate solutions. The prompt template we use is shown be-

low in Prompt 12. This gives us a set of candidate solutions in Response 6.

STAGG then learns a probabilistic context-free grammar that captures

this set of solutions as templates. We describe how we learn this gram-

mar in Section 5.4.2. The grammar below in Figure 5.1 shows probabilities

for each production rule in parentheses. Each tensor and constant in the

grammar is treated as a symbolic variable, which can later be replaced

when the template is instantiated.

1 void function(int N, int∗ Mat1, int∗ Mat2, int∗ Result){

2 int∗ p_m1;

3 int∗ p_m2;

4 int∗ p_t;

5 int i, f;

6 p_m1 = Mat1;

7 p_t = Result;

8 for (f = 0; f < N; f++) {

9 ∗p_t = 0;

10 p_m2 = &Mat2[0];

11 for (i = 0; i < N; i++)

12 ∗p_t += ∗p_m1++ ∗ ∗p_m2++;
13 p_t++;

14 }

15 }

Benchmark 8: A C implementation of ∑𝘕−𝟣
𝘪=𝟢 Mat1(𝘧 × 𝘕 + 𝘪) ⋅ Mat2(𝘪). The

result is a dot product between the 𝘧 -th row of Mat1 and vector Mat2. The
equivalent synthesized TACO expression is a(i) = b(i,j) ∗ c(j)
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You are a scientific assistant that knows a lot about

transpilation. Translate the following C code to an

expression in the TACO tensor index notation. The

expression must be valid as input to the taco

compiler. Return a list with 10 possible expressions.

Return the list and only the list, no explanations.

{the input C program}

Prompt 12: The prompt requesting 𝟣𝟢 TACO expressions for a given C

program. The temperature we use is 𝟣.𝟢, and the role is “You are a
scientific assistant that knows a lot about transpilation”
.

We use a weighted 𝘈∗ search to explore the space of the grammar, in-

spired by work in the literature [64, 57], enhanced with penalty functions

that penalise (partial or complete) templates that fail to adhere to syntactic

constraints. When a complete template is found, this is passed to a tem-

plate validator, which searches for all possible instantiations of the tem-

plate and evaluates them against a set of input-output examples. A valid

template, in this instance, would be the template a(i) = b(i,j) * c(j).
This is instantiated to the concrete program Result(i) = Mat1(i,j) *
Mat2(j). We compile this TACO program using the TACO compiler into C

code, and check with bounded model checking that the two pieces of C

code are equivalent.

r(f) = m1(i, f) * m2(f)

Result(i) = Mat1(i,f)*Mat2(f)

Result(i) := Mat1(f,i) * Mat2(i)
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Result(f) = sum(f, mat1(f, i) * mat2(i))

Response 6: LLM-generated candidate solutions for matrix product

computations based on the implementation in Benchmark 8. Displayed

are a subset of 𝟣𝟢 generated solutions, trimmed for brevity.

1 PROGRAM ∶∶= TENSOR1 "=" EXPR (1)
2 TENSOR1 ∶∶= "a(i)" (1)
3 EXPR ∶∶= TENSOR2 (0) ∣ CONSTANT (0) ∣

EXPR OP EXPR (1)
4 OP ∶∶= "+" (0.2) ∣ "−" (0) ∣ "∗" (0.8) ∣

"/" (0)
5 TENSOR2 ∶∶= "b(i,j)" (0.2) ∣ "b(j, k)" (0.1) ∣ …

"c(i)" (0.3) ∣ "c(j)" (0.2) ∣ "c(k)"

Figure 5.1: A probabilistic context-free grammar template.
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5.3 Overview of STAGG

 

10 Possible
Solutions

LLM Probabilistic
Grammar 

%
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Figure 5.2: Overview of STAGG. We query the LLM to provide 10 possible

solutions in TACO that are equivalent to the input code C. Based on the LLM

response, we build a probabilistic grammar and enumerate the space of

template programs described by the said grammar. We validate a candid-

ate using I/O examples, and if it passes all tests, we proceed to verification

to prove equivalence with the original C implementation. The input code

is also analysed to predict the dimensionality of the left-hand side tensor

in the solution.

Lifting to tensor DSLs is a challenging problem for program synthesis, and

existing enumerative techniques are capable of accurate translation but

rely on hand-written heuristics in order to scale. In contrast, highly scal-

ablemachine-learning-based approaches like languagemodels fail to give

accurate translations due to the complexity of the benchmarks. The key in-

sight behind STAGG is that we can achieve the best of both worlds by using

an LLM to learn the heuristics for an enumerative solver.

To that end, STAGG, as shown in Figure 5.2, implements a multi-staged

hybrid synthesis approach.

¬ First, we construct a prompt based on the input C code and ask the LLM

to propose 𝟣𝟢 translated solutions.
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­ We proceed to construct a probabilistic grammar, which represents the

space of solutions in the form of templates.

® We then search this space of templates with a two-stage enumerative

search: first, we search the space of templates with a search inspired

by 𝘈∗, then, given a template, we search for a valid completion of the

template against a set of input-output examples.

¯ If a completed template is found that satisfies all input-output examples,

we perform bounded verification with a bounded model checker to

validate that the completed template is equivalent to the original C

code. If it fails verification, we return to the template enumeration

stage.

5.4 Learning a Grammar of Templates

The first step of STAGG uses a large language model to generate a set of

candidate solutions for the synthesis problem in hand, using the prompt

shown in Section 5.2. This gives us a set of candidate solutions, 𝘗. We ask

for 𝟣𝟢 solutions, but we parse in as many solutions as the LLM gives us

(which is sometimes more than 𝟣𝟢) and discard any syntactically incorrect

solutions.

Given a set of incorrect candidate solutions from the LLM, we hypothes-

ise that, even though none of the candidate solutions were precisely cor-

rect, the correct solution is likely to lie in the neighbourhood of the LLM’s

guesses. To that end, we characterise this neighbourhood using a prob-

abilistic grammar of templates. We use a context-free grammar, but note

that, in principle, any probabilisticmodel that characterises the neighbour-

hood of guesses could be used. First, let us define some of the preliminar-
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ies we will need for this section.

5.4.1 Constructing a Grammar of Templates

Capturing the search space as a grammar of templates rather than com-

plete TACO programs has two advantages: first, in comparison to using

the full TACO grammar, it reduces the search space that the enumerat-

ive synthesis process has to search; and second, it allows us to group se-

mantically equivalent but syntactically different candidate expressions to-

gether as one when constructing the weighted context-free grammar. For

example, expressions like 1 t(f) = m1(i, f) ∗ m2(f) and 3 Tar-
get(i) ≔ Mat1(f,i) ∗ Mat2(i) in LLM Response 6, are equivalent in

structure (we use a preprocessing to swap ≔ to = before parsing), yet they

would yield different terminal rules in the full grammar due to variations

in notation.

PROGRAM

TENSOR

t f

= EXPR

EXPR

m1 i f

∗ EXPR

m2 f

→

PROGRAM

TENSOR

a i

= EXPR

EXPR

b j i

∗ EXPR

c i

←

PROGRAM

TENSOR

Target i

= EXPR

EXPR

Mat1 f i

∗ EXPR

Mat2 i

Figure 5.3: Expression standardisation. We omit part of the derivation for

brevity.

Given a set of candidate solutions, the first step is to construct a gram-

mar of templates that captures the full set of solutions. The full grammar

for TACO programs, 𝘎𝘛𝘈𝘊𝘖 is shown in Figure 5.4. A TACO program is any

program in ℒ(𝘎𝘛𝘈𝘊𝘖).

Definition 3 (Templates). We define a TACO template 𝜏 to be any string ob-
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tained by taking a program 𝘱 ∈ ℒ(𝘎𝘛𝘈𝘊𝘖) and replacing all tensors with sym-

bolic tensor variables, denoted 𝘵𝟣, 𝘵𝟤, … and all constants with constant symbols

𝘤𝘰𝘯𝘴𝘵𝟣, 𝘤𝘰𝘯𝘴𝘵𝟤, …

Given a set of candidate programs from the LLM, 𝘗, we aim to find a

grammar 𝘎𝜏 that contains a set of templates 𝒯 that allow us to generate

all programs 𝘱 ∈ 𝘗. A substitution

𝘚 = (𝘵𝟣 ↦ 𝘴𝟣𝟣, 𝘵𝟤 ↦ 𝘴𝟣𝟤, … , 𝘤𝘰𝘯𝘴𝘵𝟣 ↦ 𝘴𝘤𝟣)

is mapping from symbolic tensor variables and constant symbols to ter-

minal symbols in the grammar 𝘎𝘛𝘈𝘊𝘖. A template generates a program if

∃𝘚.𝜏.{𝘚} = 𝘱,

where 𝜏.𝘚 indicates the result of replacing all occurrences of 𝘵𝟣 with 𝘴𝘵𝟣, and
𝘵𝟤 with 𝘴𝘵𝟤 etc in 𝘵. Thus, our requirement on our grammar is two constraints:

first, that

∀𝜏.(𝜏 ∈ 𝒯) ⟹ 𝜏 ∈ ℒ,
and second, that

∀𝘱 ∈ 𝘗.∃𝜏 ∈ 𝒯 ∧ ∃𝘚. 𝜏.{𝘚} = 𝘱.
This is obviously trivially satisfied by the complete grammar of TACO

programs, yet it is undesirable as it has not reduced our search space. We

also aim to create a grammar that is as small as possible, whilst avoiding

over-fitting, and we attempt to optimise this trade-off by the method of

construction described in the following section.

Templatized candidate solution:

We obtain the grammar 𝘎𝜏 by first inferring a template for each solution

in 𝘗. The first step involves parsing each 𝘱 ∈ 𝘗 into an Abstract Syntax Tree
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(AST), a structured representation that captures the hierarchical organisa-

tion of the expression. The AST organises operations, tensor identifiers,

and indices as distinct nodes, allowing systematic traversal and manipula-

tion. For example, consider the expression 1 t(f) = m1(i, f) ∗ m2(f)
in Response 6 can be parsed as the left tree in Figure 5.3. We then trans-

form the AST in three stages: Tensor Templatization, Index Standardisation,

and Constant Templatization.

Tensor templatization:

We replace each tensor name in the expression with a symbolic tensor

variable. From hereon, we use a, b, c, as the symbolic tensor variables

𝘵𝟣, 𝘵𝟤, 𝘵𝟥, …, to align with the variable names in the code examples. The iden-

tifiers are assigned in alphabetical order—starting with a for the left-hand

side tensor and using b, c, d, ... sequentially for tensors on the right-hand

side, based on their order of first appearance. The expression t(f) =
m1(i, f) ∗ m2(f) will be transformed into a(f) = b(i,f) ∗ c(f) by

this step.

Index standardisation:

The index standardisation step ensures that each tensor expression in

the grammar uses a consistent set of index variables, irrespective of the

original indices in the input expression. Each unique index variable en-

countered in an expression is mapped to the next available symbol from

the canonical set {i,j,k,l} in alphabetical order. The expression a(f) =
b(i,f) ∗ c(f) will be transformed to a(i) = b(j,i) ∗ c(i) by this

step, as shown in themiddle in Figure 5.3. The index variables do not need

to be replaced by template instantiation as they are local variables to the

program.

Constant templatization:

Any constants in the candidate solutions are replaced with a symbolic
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constant Const. The template instantiation step will instantiate from a list

of constants found in the input source code.

Refining the grammar:

Given the templatized candidate solutions𝒯, we wish to construct a prob-

abilistic grammar that represents the space of these solutions, without

substantially over-fitting. The first step is to construct a context-free gram-

mar that defines this set of templates.

We start with the base grammar of TACOprograms, shown in Figure 5.4.

We then restrict the set of tensor names to be the names we have chosen

as symbolic tensor variables and constants, namely 𝘢, 𝘣, 𝘤, … and 𝘤𝘰𝘯𝘴𝘵,
and also limit the set of index variables to be 𝘪, 𝘫, 𝘬, 𝘭, …. In theory, this per-

mits 𝟤𝟨 tensor IDs and 𝟦 index variables, because one can always infer

whether a variable is an index or a tensor identifier by context. In practice,

we never need this many, and searching a space that includes up to 𝟤𝟨 𝟦-
dimensional tensors is obviously impractical. This section addresses how

we initially reduced this search space. Namely, by predicting the dimen-

sions of the tensors in order to refine the grammar.
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1 PROGRAM ∶∶= TENSOR "=" EXPR
2 TENSOR ∶∶= IDENTIFIER ∣

IDENTIFIER "(" INDEX-EXPR ")"
3 EXPR ∶∶= TENSOR ∣ CONSTANT ∣ "(" EXPR ")" ∣

"−" EXPR ∣ EXPR "+" EXPR ∣
EXPR "−" EXPR ∣ EXPR "∗" EXPR ∣
EXPR "/" EXPR

4 INDEX-EXPR ∶∶= INDEX-VAR ∣ INDEX-VAR "," INDEX-EXPR
5 INDEX-VAR ∶∶= "i" ∣ "j" ∣ "k" ∣ "l"
6 IDENTIFIER ∶∶= LETTER ( LETTER ∣ INTEGER )*
7 CONSTANT ∶∶= INTEGER
8 INTEGER ∶∶= DIGIT+
9 LETTER ∶∶= "a" ∣ "b" ∣ ... ∣ "z" ∣

"A" ∣ "B" ∣ ... ∣ "Z"
10 DIGIT ∶∶= "0" ∣ "1" ∣ "2" ∣ ... ∣ "9"

Figure 5.4: The grammar for TACO expression in Extended Backus–Naur

form, defining the syntax for tensor expressions, identifiers, constants,

and basic arithmetic expressions. The * symbol denotes Kleene star, indic-

ating zero or more repetitions of the preceding element, while + denotes

Kleene plus, requiring one or more occurrences.

Predicting tensor dimensions:

To accurately predict tensor dimensions for a given program, we combine

insights from a language model (LLM) with static code analysis. Static ana-

lysis is used to predict the left-hand side (LHS) tensor dimensions of an

expression, while the LLM is used to predict dimensions for the right-hand

side (RHS). Static analysis, by analysing the source code, can determine

precisely the dimensions for the LHS tensor, but cannot do the same for

the RHS, so we fall back on heuristics learned by the LLM for the RHS.

Definition 4 (Dimension list). We define a dimension list 𝘓𝜏 to be a list of

integers (𝘥𝟣, 𝘥𝟤, 𝘥𝟥, …) where 𝘥𝘪 is the dimension for the 𝘪𝘵𝘩 unique tensor in the

template 𝜏. We use 𝘓[𝘪] to indicate accessing the 𝘪𝘵𝘩 element of the dimension

list 𝘓, and |𝘓| to indicate the length of the list 𝘓. We list the dimensions of
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constants and variables as 𝟢.

For example, the list [𝟣, 𝟤, 𝟦] indicates that the first tensor in the expres-

sion has 𝟣 dimension, the second tensor has 𝟤 dimensions, and the third

tensor has 𝟦 dimensions.

Dimension prediction for RHS tensors using LLM:

Given a set of templatized solutions

{𝜏𝟣, … 𝜏𝟣𝟢} ∈ 𝒯,

generated by the LLM, we compute the dimension list for each candidate

solution, giving a set of lists

𝘓𝒯 = {𝘓𝜏𝟣 , … , 𝘓𝜏𝟣𝟢}

. We then filter this list by length and remove any list that has a length less

than the maximum length, giving the filtered set

𝘓∗𝒯 = {𝘭 ∈ 𝘓𝒯 ∣ |𝘭| ≥ |𝘓𝜏𝘪| for all 𝘓𝜏𝘪 ∈ 𝘓𝘗𝒯)}.

Finally, we return the list that appears most frequently in the filtered set,

i.e.,

𝘓𝜏 = arg max𝘭 |𝘭 ∈ 𝘓∗𝒯|.
From here on, we denote this predicted list 𝘓, and refer to this as the pre-

dicted dimension list.

Integrating static analysis for LHS tensors. Weuse static programana-

lysis to examine the original program AST and predict the LHS dimension.

We apply a dataflow analysis to recover the dimensions in the array ac-

cesses to recover the original dimensionality. For standard array accesses,

e.g., 𝘢(𝘪, 𝘫), we simply count the number of variables used to index the base

pointer. However, it is common that C programs access multi-dimensional

elements using affine linear expressions on index variables. In such cases,
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we use array delinearization [78] to recover the standard array access form

and predict the dimensionality by counting the number of indexing vari-

ables.

Additionally, some applications use explicit pointer arithmetic to iterate

over arrays. We implement array recovery [32] to retrieve array access

expressions from pointers and then apply delinearization and analyse the

indexing expression. In case the output variable is not accessed through

any memory indexing operation, we assume it is a scalar and predict zero-

dimensionality.

As the left-hand side tensor necessarily appears first in the expression,

we replace 𝘓[𝟣] with the predicted dimension for the first tensor from the

static analysis.

Generating the context-free grammar:

Given a dimension list, we wish to generate a grammar that ensures we

only enumerate combinations of indices required tomake all possible tensor

expressions that match the predicted dimensions (or, at least, reduce this

space as far as possible without increasing the complexity of the grammar

significantly). For instance, if the dimension list is [𝟢, 𝟣, 𝟥], and at least one

of the predicted solutions is a = b(i) + c(i,j,k), we will modify the

grammar to fix the production rule for the first tensor to restricted to a,
and ensure for any remaining tensor that appear in the expression, the

grammar can enumerate b(i) and c(i,j,k), c(i,k,j), c(j,i,k),
c(k,i,j), c(j,k,i), c(k,j,i). This permits all possible combina-

tions of indexing of the tensors of the predicted dimensions, allowing the

index used for b(i) to be repeated in any position when indexing c.

Formally, we define this grammar generator as a set of constraints reas-

oningover the predicteddimension list 𝘓 and the set of templates𝒯, which,
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if true, indicate that the production rule should be included in the gram-

mar. We use [c]𝘳𝘪 to denote that a production 𝘳𝘪 is included within the

grammar if c is true. 𝘪(𝘗) denotes the number of unique index variables in

the set of programs𝒯. Rules without a constraint automatically appear in

the grammar.

1 PROGRAM ∶∶= TENSOR1 "=" EXPR
2 EXPR ∶∶= TENSOR ∣ EXPR OP EXPR
3 OP ∶∶= "+" ∣ "−" ∣ "∗" ∣ "/"
4 [𝘓[𝟣] = 𝟢]TENSOR1 ∶∶= "a"
5 [𝘓[𝟣] = 𝟣]TENSOR1 ∶∶= "a(i)"
6 [𝘓[𝟣] = 𝟤]TENSOR1 ∶∶= "a(i,j)"
7 …
8 [𝘓[𝟤] = 𝟢]TENSOR ∶∶= "b" ∣ "Const"
9 [𝘓[𝟤] = 𝟣]TENSOR ∶∶= "b(i)" ∣ [𝘪(𝘗) > 𝟣]"b(j)" ∣

[𝘪(𝘗) > 𝟤]"b(k)" ∣ …
10 …
11 [𝘓[𝟤] = 𝟤]TENSOR ∶∶= "b(i,j)" ∣ "b(j,i)" ∣

[𝘪(𝘗) > 𝟤]"b(i,k)" ∣ …
12 …
13 [𝘓[𝟥] = 𝟢]TENSOR ∶∶= "c" ∣ "Const"
14 [𝘓[𝟥] = 𝟣]TENSOR ∶∶= "c(i)" ∣ [𝘪(𝘗) > 𝟣]"c(j)" ∣

[𝘪(𝘗) > 𝟤]"c(k)" ∣ …
15 …

For every element in the dimension list, we add a new tensor id, a, b,
c …, and index it with the number of index variables that correspond to

the element in the dimension list. For an element 𝘪, where 𝘓[𝘪] = 𝘯, and
for a set of candidate programs where 𝘪(𝒯) = 𝘮, we add a production rule

for every possible way of choosing 𝘯 indices from 𝘮 index variables. We

then remove any production rules that could not be used for parsing any

candidate 𝜏 ∈ 𝒯, e.g., if no template in𝒯 contains a 2-dimensional tensor

indexed with the same index variable twice, we will remove b(i,i). An

example generated template grammar is shown in Figure 5.5.
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1 PROGRAM ∶∶= TENSOR1 "=" EXPR
2 TENSOR1 ∶∶= "a(i)"
3 EXPR ∶∶= TENSOR ∣ CONSTANT ∣ EXPR OP EXPR
4 TENSOR ∶∶= "b(i,j)" ∣ "b(j, i)" ∣ "b(i, k)" ∣ …

"c(i)" ∣ "c(j)" ∣ "c(k)"
5 CONSTANT ∶∶= "Const"
6 OP ∶∶= "+" ∣ "−" ∣ "∗" ∣ "/"

Figure 5.5: An example generated template grammar, for the dimension

list [𝟣, 𝟤, 𝟣, 𝟢], with a maximum of 𝟥 unique indices appearing in the can-

didate LLM solutions.

5.4.2 Assigning Probabilities to the Grammar

We now wish to assign a probability to each production rule in the gram-

mar of TACO templates according to their frequency in the left-most deriv-

ations of the candidate solutions.

Given a set of templatized solutions

𝒯 ∈ ℒ(𝘎𝘵𝘦𝘮𝘱𝘭𝘢𝘵𝘦),

we calculate a weight for each rule 𝘳𝘪 ∈ 𝘙 as the number of times that rule

appears in the left-most derivations of the programs. That is,

𝘸[𝘳𝘪] = ∑
𝜏𝘪∈𝒯

|𝘳𝘪| ∈ 𝘋𝜏𝘪 ,

where |𝘳𝘪| is the number of times 𝘳𝘪 appears in the derivation 𝘋𝜏𝘪 . These

weights reflect the usage frequency of each tensor with specific indices in

the expressions provided by the LLM. Note that, for any production rules

used to replace the tensor nonterminal symbols, e.g., 1DTENSOR, which do

not appear in any of the candidate solutions, we assign a default weight of

𝟣. This assignment ensures that these combinations are consideredduring

the synthesis process with a lower priority.

Using the weights calculated for both operators and tensors, we con-

struct the corresponding probabilistic Context-Free Grammar (𝘱𝘊𝘍𝘎𝜏 ) by
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normalising the weights into probabilities. For each non-terminal symbol

𝛼, the probability of applying the production rule 𝛼 → 𝛽 is calculated by the

equation in Section 4.4.1.

5.5 Searching the Template Space

We present two algorithms for searching the space of TACO templates.

The first is based on a weighted 𝘈∗ search in the literature [57, 64], which

searches the grammar of TACO templates in a top-down manner. We ex-

tend this algorithm to incorporate a penalty score that accounts for known

syntactic constraints on the target solution. The second is an adapted ver-

sion of 𝘈∗ , which combines bottom-up search with 𝘈∗ heuristics.

5.5.1 Top-Down Weighted 𝘈∗

Algorithm 9 outlines the top-down weighted 𝘈∗ search with penalties. The

search operates over a probabilistic Context-Free Grammar derived from

large languagemodel (LLM) outputs. The 𝘈∗ search in this chapter is differ-

ent from Chapter 4, whose 𝘈∗ doesn’t have a penalty function. It maintains

a queue of partial templates, represented as abstract syntax trees, which

we can think of as the frontier of its search. This initially contains just the

start symbol of the grammar. At each iteration, it must determine which of

the partial templates should be further explored, which it does based on

the cost of the path taken to reach those partial templates and an estimate

of the cost required to extend the path all the way to the goal. The goal

is, ultimately to find a complete template that we believe is likely to satisfy

the specification, that is a template can generate a program 𝘱𝘵 such that

∀𝘹⃗.𝘱𝘵(𝘹⃗) = 𝘱𝘴(𝘹⃗).
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Thus, when choosing which partial template to further explore, the al-

gorithm chooses the template with the minimum 𝘧 (𝘹), where 𝘹 is the par-

tial template, defined as:

𝘧 (𝘹) = 𝘤(𝘹) + 𝘨(𝘹) + 𝒳(𝘹),

where 𝘤(𝘹) calculates the accumulated cost from the start node 𝘚 to current
node 𝘹. 𝘨(𝘹) is the heuristic estimate of the minimal cost to complete the

expression from 𝘹 to a goal node (a template we believe is likely to satisfy

the specification), and 𝒳(𝘹) is a penalty term for expressions that violate

domain-specific syntactic constraints. These are calculated as follows:

The accumulated cost 𝘤(𝘹) is calculated as the sum of the costs of the

production rules applied along the path to 𝘹:

𝘤(𝘹) = ∑
𝘳𝘪∈𝘋𝘹

− log𝟤 ℙ[𝘳𝘪],

where 𝘋𝘹 is the sequence of production rules used to reach the node 𝘹 and
ℙ[𝘳𝘪] is the probability of production rule 𝘳𝘪. This cost function transforms

probabilities into additive costs, suitable for the 𝘈∗ search.

The heuristic function 𝘨(𝘹) estimates the minimal additional cost re-

quired to complete the partial expression at node 𝘹 to a full expression.

It is defined as:

𝘨(𝘹) =
⎧⎪⎨⎪⎩

𝟢 if 𝘹 ∈ Σ∗,
−∑𝘹𝘪∈𝘝 log𝟤 𝘩(𝘹𝘪) otherwise,

where 𝘹𝘪 are the non-terminal symbols in the partial expression 𝘹, and
𝘩(𝛼) is the maximal probability of deriving any terminal string from non-

terminal 𝛼. The value 𝘩(𝛼) is defined recursively for each non-terminal 𝛼:

∀𝛼 ∈ 𝘝, 𝘩(𝛼) = max𝛼→𝛽∈𝘙(ℙ[𝛼 → 𝛽] × ∏
𝛽𝘪∈𝛽

𝘩(𝛽𝘪)) ,
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with the base case 𝘩(𝛼) = 𝟣, if 𝛼 ∈ Σ. This equation represents the

maximal probability of deriving a terminal string from 𝛼, accounting for

the probabilities of production rules and the maximal probabilities of its

components.

The penalty function 𝒳(𝘹) this assigns additional costs to expressions

that do not meet specific domain criteria. This function can be formalised

as follows:

𝒳(𝘹) =
⎧⎪⎨⎪⎩

∑𝘢∈𝘈𝒳𝘢(𝘹) if 𝘹 violates criterion 𝘢,
𝟢 otherwise,

There are 𝟧 criteria {𝘢𝟣, … 𝘢𝟧} ∈ 𝘈, and their penalty scores are defined as

follows (note that an infinite penalty score effectively means these expres-

sions will never be considered):

• 𝒳𝘢𝟣(𝘹) = 𝟣𝟢, where 𝘢𝟣 is violated if the grammar includes a constant

expression, the length of 𝘹 exceeds 𝟥, and 𝘹 either 1) contains fewer

than 𝟤 tensors with index i or 2) lacks a constant expression. This

penalty biases the search against expressions with multiple tensors

but inadequate index variety or missing constants.

• 𝒳𝘢𝟤(𝘹) = 𝟣𝟢𝟢, where 𝘢𝟤 is violated iff 𝘹 is not the same length as the

length of the dimension list.

• 𝒳𝘢𝟥(𝘹) = ∞, where 𝘢𝟥 is violated if the tensor symbols in 𝘹 are not

in alphabetical order by order of first appearance. This penalty rule

avoids enumerating templates that are structurally identical, and there-

fore can be instantiated into identical sets of programs.

• 𝒳𝘢𝟦(𝘹) = ∞, where 𝘢𝟦 is violated if 𝘹 is a complete template (no non-

terminal symbols), and repeatedly applies addition, subtraction, or

division operations on the same tensor.
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• 𝒳𝘢𝟧(𝘹) = ∞, where 𝘢𝟧 is violated if 𝘹 is a complete template (no non-

terminal symbols), and employs fewer than half of the operations

defined in the grammar.

Algorithm 9 Top-Down Enumerator
1: procedure ENUMERATE(𝘱𝘊𝘍𝘎𝜏 )

2: 𝘘 ← {(𝟢, 𝘱𝘊𝘍𝘎𝜏 .𝘚)} ▷ Initialize queue with start symbol of grammar

3: while 𝘘 ≠ ∅ do

4: (𝘧 , 𝘹) ← 𝘘.𝘱𝘰𝘱() ▷ Remove template with minimal 𝘧
5: if depth(𝘹) >maxDepth then

6: continue ▷ Skip if maximum depth exceeded

7: end if

8: if 𝘹 ∈ Σ∗ then ▷ If no non-terminals remain in 𝘹
9: 𝘚 ← VALIDATE(𝘹) ▷ Try to instantiate 𝘹

10: if 𝘚 ≠ ⊥ then

11: if VERIFY(𝘹.{𝘚}) then
12: return 𝘹.{𝘚}
13: end if

14: end if

15: end if

16: for 𝘹′. s.t. (𝘹 𝘳−→ 𝘹′ ∧ 𝘳 ∈ 𝘱𝘊𝘍𝘎𝜏 .𝘙) do ▷ Iterate over all possible

expansions of 𝘹
17: 𝘘 ← 𝘘 ∪ {𝘤(𝘹′) + 𝘨(𝘹′) + 𝒳(𝘹′), 𝘹′}
18: end for

19: end while

20: return Failure ▷ Return Failure if no valid expression is found

21: end procedure

Search. The search is shown in Algorithm 9. The algorithm keeps a queue
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of expressions in a queue, which you can consider to be the frontier of the

search. At each iteration, it selects the expressions with the lowest total

score 𝘧 from the queue. If the expression is a complete expression, i.e., it

contains only terminal symbols from the grammar, we then send this to

the validation procedure described in Section 5.6. If the expression is a

partial expression, the leftmost non-terminal of the expression is expan-

ded according to all applicable production rules in the grammar, creating

a new template for each production rule. These new expressions are all

added to the queue and the process is repeated.

We set a depth limit of 𝟨, and if any expression exceeds this depth, it is

discarded. We calculate depth as the depth of the maximum child in the

abstract syntax tree, excluding index expressions, e.g., b(i) and c(i,j)
are both expressions of depth 1, and b(i) + c(i,j) is an expression of

depth 2.

5.5.2 Bottom-Up Weighted 𝘈∗

The algorithmpresented in theprevious section takes a top-downapproach

to enumerating through the search space. This has advantages over bottom-

up search, namely that it is known to find longer programs faster than

bottom-up search, which is biased towards shorter programs. Neverthe-

less, recent work has shown that guided bottom-up search can produce

promising results [13]. To that end, we develop a new 𝘈∗ inspired bottom-

up search algorithm, which we term bottom-up 𝘈∗ . The bottom-up search,

shown in Algorithm 10 constructs expressions incrementally by starting

with basic tensors and systematically combining themusing operators, fol-

lowing a probabilistic context-free grammar. Again, the algorithm main-

tains a queue of expressions, and uses the same combination of cost, es-

timated cost to reach a goal state and the penalty function to determine
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which expression to expand first.

One key difference in the bottom-up search is the way we generate

the template grammar. For the bottom-up search, where the production

rules only permit extending an expression by adding an operator and a

new tensor to the end, effectively forcing the algorithm to enumerate pro-

grams shortest first. The grammar generator, given a predicted dimension

list 𝘓, and a function 𝘪(𝒯)which calculates the number of unique indices in

𝒯, is shown below:
1 PROGRAM ∶∶= TENSOR1 "=" EXPR
2 EXPR ∶∶= TENSOR2 TAIL1
3 TAIL1 ∶∶= 𝜀 ∣ [|𝘓| > 𝟤] OP TENSOR3 TAIL2
4 TAIL2 ∶∶= 𝜀 ∣ [|𝘓| > 𝟥] OP TENSOR4 TAIL3

…
5 OP ∶∶= "+" ∣ "−" ∣ "∗" ∣ "/"
6 [𝘓[𝟣] = 𝟢]TENSOR1 ∶∶= "a"
7 [𝘓[𝟣] = 𝟣]TENSOR1 ∶∶= "a(i)"
8 [𝘓[𝟣] = 𝟤]TENSOR1 ∶∶= "a(i,j)"
9 [𝘓[𝟤] = 𝟢]TENSOR2 ∶∶= "b" ∣ "Const"
10 [𝘓[𝟤] = 𝟣]TENSOR2 ∶∶= "b(i)" ∣ [𝘪(𝘗) > 𝟣]"b(j)" ∣

[𝘪(𝘗) > 𝟤]"b(k)"
11 [𝘓[𝟤] = 𝟤]TENSOR2 ∶∶= "b(i,j)" ∣ "b(i,j)" ∣ "b(j,i)" ∣

[𝘪(𝘗) > 𝟤]"b(i,k)" ∣ …
12 [𝘓[𝟥] = 𝟢]TENSOR3 ∶∶= "c" ∣ "Const"
13 [𝘓[𝟥] = 𝟣]TENSOR3 ∶∶= "c(i)" ∣ [𝘪(𝘗) > 𝟣]"c(j)" ∣

[𝘪(𝘗) > 𝟤]"c(k)" ∣ …
14 …

An example of generated grammar is shown in Figure 5.6.

Weights and probabilities over the grammar are then calculated as de-

scribed in Section 5.4.2.
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1 PROGRAM ∶∶= TENSOR1 "=" EXPR
2 TENSOR1 ∶∶= "a"
3 EXPR ∶∶= 1DTENSOR TAIL1
4 TAIL1 ∶∶= 𝜀 ∣ OP 2DTENSOR TAIL2
5 TAIL2 ∶∶= 𝜀 ∣ OP 1DTENSOR
6 2DTENSOR ∶∶= "c(i, j)" ∣ "c(j, i)" ∣ "c(i, k)" ∣ …
7 1DTENSOR ∶∶= "b(i)" ∣ "d(k)"

Figure 5.6: An example generated template grammar, for the dimension

list [𝟢, 𝟣, 𝟤, 𝟣], with amaximumof 𝟥 unique indices appearing in the candid-

ate LLM solutions. The rules for each tensor index expression include all

possible permutations of indices. The symbol 𝜀 denotes the empty string.

The search algorithm maintains a queue of partial programs, as with

the top-down search, which is initialised with the start symbol from the

grammar. At each iteration, the program with the minimum cost function,

as before, is popped from the queue, expanded, and all the resulting pro-

grams are added to the queue. The total cost function 𝘧 (𝘹) for each partial

expression 𝘹, is again defined as:

𝘧 (𝘹) = 𝘤(𝘹) + 𝘨(𝘹) + 𝒳(𝘹),

where 𝘤(𝘹) is calculated as before. In the bottom-up search, we use a sim-

plified estimate of the cost to complete the program, 𝘨(𝘹), which is defined

as:

𝘨(𝘹) =
|𝘓|
∑
𝘪=𝘬

𝘮(𝘓[𝘪 + 𝟣]),

where 𝘬 is the current number of tensors in 𝘹, 𝘓 is the predicted dimen-

sion list, and𝘮(𝘥) is the minimal cost to add a tensor of dimension 𝘥. The
minimal cost 𝘮(𝘥) is computed as follows, where Tensors(𝘥) is the list of

tensors in the grammar of dimension 𝘥, and 𝒫[𝘵] is the maximum prob-

ability of any production rule in the grammar which adds the tensor of
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dimension 𝘥:
𝘮(𝘥) = − log𝟤 ( max𝘵∈Tensors(𝘥)ℙ[𝘵]) .

Thepenalty function is calculated as before, butwith the criteria {𝘣𝟣, 𝘣𝟤} ∈ 𝘉
defined as:

• 𝒳𝘣𝟣(𝘹) = 𝟣𝟢𝟢, where 𝘣𝟣 is violated if the tensor symbols in 𝘹 are not

in alphabetical order by order of first appearance.

• 𝒳𝘣𝟤(𝘹) = ∞, where 𝘣𝟤 is violated if 𝘹 contains at least as many tensors

as predicted by the dimension list, and it uses fewer than half the

operations available in the grammar, and 𝟢 otherwise.

The bottom-up search uses fewer penalty criteria than the top-down

search because the construction of the grammar encapsulates a number

of these criteria already (for instance, the tensors are enumerated by pre-

dicted dimension list order).

The main difference between the top-down and the bottom-up search

is that the bottom-up grammar is generated in a way that, at each inter-

mediate step, a complete program can be inferred from the partial pro-

gram and checked against the specification. Every time an expression is

dequeued from the queue, if the expression contains a tail nonterminal

symbol, e.g., TAIL1, TAIL1; we can remove the tail nonterminal symbol to

give a complete template (i.e., a template that contains no non-terminal

symbols). We can then return this template to the template validator. If it

fails validation, wewill re-append the nonterminal symbol to the end of the

expression and generate new expressions by expanding the non-terminal

using all applicable production rules. The new expressions are added into

the queue.
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Algorithm 10 Bottom-Up Enumerator
1: procedure ENUMERATE(𝘱𝘊𝘍𝘎𝜏 , 𝘓)
2: 𝘘 ← {(𝟢, 𝘱𝘊𝘍𝘎𝜏 .𝘚)} ▷ Priority queue initialized with start node

3: while 𝘘 ≠ ∅ do

4: (𝘧 , 𝘹) ← 𝘘.𝘱𝘰𝘱() ▷ Remove template with minimal 𝘧
5: if |𝘵𝘦𝘯𝘴𝘰𝘳𝘴(𝘹)| = |𝘓| then ▷ If number of tensors in 𝘹 is the

predicted number

6: if 𝘹 ∉ Σ∗ then
7: 𝘹 ← RemoveTail(𝘹) ▷ Remove any tail nonterminal

symbol

8: end if

9: 𝘚 ← VALIDATE(𝘹) ▷ Try to instantiate 𝘹
10: if 𝘚 ≠ ⊥ then

11: if VERIFY(𝘹.{𝘚}) then
12: return 𝘹.{𝘚} ▷ Return instantiated template

13: end if

14: end if

15: end if

16: for 𝘹′. s.t. (𝘹 𝘳−→ 𝘹′ ∧ 𝘳 ∈ 𝘱𝘊𝘍𝘎𝜏 .𝘙) do ▷ Iterate over all possible

expansions of 𝘹
17: 𝘘 ← 𝘘 ∪ {𝘤(𝘹′) + 𝘨(𝘹′) + 𝒳(𝘹′), 𝘹′}
18: end for

19: end while

20: return Failure ▷ Return Failure if no valid expression is found

21: end procedure
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5.6 Validation

Once the synthesiser produces a complete template 𝜏, we wish to check

whether it can generate a program 𝘱𝘵 that satisfies the requirement

∀𝘹⃗𝘱𝘴(𝘹⃗) = 𝘱𝘵(𝘹⃗).
Since checking this universally quantified formula is expensive, we first

generate a set of tests in the form of input-output examples. This set of

examples ⟨𝘐, 𝘖⟩ is a list of input-output pairs where

𝘐 = ⟨𝘹𝟣 ↦ 𝘷𝟣, ..., 𝘹𝘯 ↦ 𝘷𝘯⟩
is a map that binds the 𝜏 input arguments

𝘹⃗ = (𝘹𝟣, ..., 𝘹𝘯)
to concrete values (𝘷𝟣, ...𝘷𝘯) randomly generated and 𝘖 = (𝘰𝟣, ..., 𝘰𝘯) is the

corresponding output producedwhenwe execute 𝘱𝘴 on the elements from

𝘐.
The TACO templates generated during the synthesis phase contain sym-

bolic placeholders for tensors and constants. To validate a candidate 𝜏, we
build a set

𝘚 = (𝘴𝟣, ..., 𝘴𝘮)
of substitutions 𝘴 ↦ 𝘹 that map the symbolic symbols 𝘴 in 𝘵𝘢𝘶 to input

arguments 𝘹. We iterate through all possible permutations of 𝘚, where
tensor symbols are mapped to concrete tensor inputs, and constants are

mapped to a set of constants

𝘊 = (𝘤𝟣, ..., 𝘤𝘮)
containing the constant values present in the source code of 𝘱𝘴. We can

then generate a concrete program

𝘱𝘵 = 𝜏.{𝘚},
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and execute 𝘱𝘵 on the input-output examples in ⟨𝘐, 𝘖⟩. If any instantiated
concrete program satisfies all the input-output examples, we return this

to the next stage of verification. We use 𝘚 to assign concrete values to

TACO symbols and run 𝘗𝘛 to check its output. When building 𝘚, we rule out
invalid substitutions based on the type of arguments and TACO symbols.

More specifically, we discard substitutions that try to bind tensor symbols

with dimension > 𝟣 to scalars and vice versa. If the validator succeeds, it

returns the valid substitution 𝘚, if not it returns ⊥ to indicate there was no

valid substitution.

We explore all possible valid substitutions until we find a substitution 𝘴∗
that satisfies 𝜙. This validation process returns a tuple ⟨𝘗𝘛 , 𝘴∗⟩ that is given
as input to the verification phase.

Figure 5.7 shows a subset of the substitutions set 𝘚 given the program

in Benchmark 8 and the TACO candidate 𝘗𝘛 produced by the synthesiser,

a(i) = b(i,j) * c(j). Each substitution binds a symbol in the right-

hand side of 𝘗𝘛 , i.e., b and c to one of the inputs of function. The sub-

stitutions with a mark next to it are invalid, since they contain unsound

bindings. For example, substitution 𝘚𝟥 binds c, a 𝟣-dimensional tensor to

𝘕, which is a scalar. Such substitutions are discarded and the valid ones

are tested to run the program until we find one in which 𝘗𝘛 satisfies the

specification. In this example, the correct substitution is 𝘚𝟧, which binds b
and c to arguments Mat1 and Mat2 respectively.
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𝘚𝟣 ∶ ⟨b↦ Mat1,c↦ Mat1⟩
𝘚𝟤 ∶ ⟨b↦ Mat2,c↦ Result⟩
𝘚𝟥 ∶ ⟨b↦ Mat1,c↦ N⟩
𝘚𝟦 ∶ ⟨b↦ N,c↦ Mat1⟩
𝘚𝟧 ∶ ⟨b↦ Mat1,c↦ Mat2⟩
𝘚𝟨 ∶ ⟨b↦ Mat2,c↦ N⟩

⋮
𝘚𝘮 ∶ ⟨b↦ Result,c↦ Mat2⟩

→

𝘚𝟣 ∶ ⟨b↦ Mat1,c↦ Mat1⟩
𝘚𝟤 ∶ ⟨b↦ Mat2,c↦ Result⟩
𝘚𝟧 ∶ ⟨b↦ Mat1,c↦ Mat2⟩

⋮
𝘚𝘮 ∶ ⟨b↦ Result,c↦ Mat2⟩

→

𝘚𝟧 ∶ ⟨b↦ Mat1,c↦ Mat2⟩

Figure 5.7: A set of possible substitutions for the TACO program a(i) =
b(i,j) ∗ c(j) and the inputs from the legacy program in Benchmark 8.

We discard invalid substitutions and try the valid ones until we find one

that satisfies the specification.



5.7. Verifier 103

5.7 Verifier

We verify the correctness of a synthesised TACO program using bounded

model checking. We compile both the original C and the TACO program to

a common language within the MLIR compiler infrastructure [56]. Given

a TACO program 𝘛 and a substitution 𝘚 returned by the validator, we cre-

ate NumPy code based on the indexing expressions of 𝘛 and replace its

variables for the concrete values specified in 𝘴∗. If the model checker fails

to verify equivalence with the tuple ⟨𝘛, 𝘴∗⟩, we return to the validation step

and keep exploring different substitutions until we find one that satisfies

the specification and passes verification. We then use the JAX compiler [18]

to lower the NumPy code to MLIR.

From the MLIR files, we automatically generate C programs that create

non-deterministic inputs, execute the original C and TACO code on copies

of those inputs, and assert that the outputs are identical. We give this

C program as input to CBMC [54], a bounded model checker for C, that

verifies said assertion holds for all possible inputs up to a certain bound.

Floating-point equivalence is both challenging to verify and, in many

cases, undesirable. For instance, many compiler optimisations simply do

not preserve floating-point optimisations in order to achieve runtime speed-

ups. For this reason, we extend CBMC to support rational datatypes, and

verify equivalence using rational datatypes.

5.8 Evaluation

To evaluate STAGG and its various components, we compare its perform-

ance against several established techniques on a diverse suite of queries.

The query set includes 𝟣𝟢 artificial examples and 𝟨𝟩 real-world problems
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(𝟨𝟣 derived from codebases reported in the literature [70] and 𝟨 from the

C++ based inference code of Llama [68].)

STAGG is implemented using an extended version of CBMC 𝟨.𝟥.𝟣 with

CVC5 version 𝟣.𝟢.𝟧 as the underlying SMT solver. To generate initial can-

didate solutions, we use GPT-4 with the temperature set to 𝟣.𝟢. A timeout

of 𝟨𝟢minutes is applied to each query. All experiments are conducted on a

system equipped with an 𝟣𝟣th Gen Intel Core i5-1135G7 processor, 𝟣𝟨 GiB

of RAM, and running Ubuntu 𝟤𝟤.𝟢𝟦.𝟧 LTS. Additional configuration details,

including grammar refinements and penalty modifications, are provided

in the subsequent sections.

We compare the following approaches: (STAGG 𝘛𝘋) our approach, us-

ing the top-down 𝘈∗ search described in Section 5.5.1; (STAGG 𝘉𝘜) our ap-

proach, using the bottom-up search described in Section 5.5.2; (C2TACO)

An enumerative synthesis tool for lifting C to TACO code [70]. We compare

to C2TACO both with and without the domain-specific heuristics; (Tens-

piler) An enumerative synthesis tool based on the verified lifting frame-

work [93]; (LLM only) A baseline approach that employs a large language

model (GPT-4) to directly generate candidate solutions without additional

heuristic-driven refinement or search. In addition, we perform ablation

studies to evaluate the contributionof several components of STAGG.Namely,

the grammar refinement; the probabilities of the grammar; and the pen-

alty functions.
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5.8.1 Performance Comparison of STAGG to the State-of-

the-Art Solvers.
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Figure 5.8: Cactus plot showing the number of benchmarks solved (𝘹-axis)
vs. time (𝘺-axis, logarithmic) on the 𝟨𝟩 real-world benchmarks. Each line

corresponds to a different synthesiser, and the point at which each line

indicates how many benchmarks the synthesiser solved before the time.

Figure 5.8 depicts the cumulative time eachmethod takes over the 𝟨𝟩 real-
world benchmarks, and Figure 5.9 shows the success rate of different tech-

niques. We compare STAGG to C2TACO on the full set of 𝟩𝟩 benchmarks

in Table 5.1. STAGG𝘛𝘋 solves 𝟩𝟨 benchmarks, compared to C2TACO which

solves 𝟨𝟩. STAGG𝘛𝘋 solves all the benchmarks that C2TACO can solve, with

an average solving time of 𝟥.𝟣𝟫𝘴, compared to C2TACO’s 𝟤𝟣.𝟣𝟧𝘴. STAGG𝘉𝘜

solves 𝟩𝟥 benchmarks, and solves 𝟨𝟨/𝟨𝟩 of the benchmarks that C2TACO

solves, with an average solving time of 𝟤.𝟣𝟣𝘴 on themutually solved bench-

marks. C2TACOwithout thedomain heuristics enabled is significantly slower.

We are only able to run Tenspiler on the 𝟨𝟩 real-world benchmarks,
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Figure 5.9: Success rates of different approaches on the set of 67 real-

world benchmarks.

where it solves 𝟧𝟤. STAGG𝘛𝘋 solves all 𝟧𝟤 benchmarks that Tenspiler can

solve, with an average time of 𝟥.𝟦𝟧𝘴 compared to Tenspiler’s average time

of 𝟦.𝟧𝟨𝘴. STAGG𝘉𝘜 solves only 𝟧𝟢/𝟧𝟤 of the benchmarks that Tenspiler can

solve, but with an average time of 𝟤.𝟢𝟥𝘴. This comprehensively answers

RQ1: STAGG outperforms the state-of-the-art solvers, both in terms of cov-

erage and speed.

5.8.2 Performance Comparison of Top-Down vs Bottom-

Up Search.

Our results show that, while STAGG𝘛𝘋 solvesmorebenchmarks than STAGG𝘉𝘜,

STAGG𝘉𝘜 is faster on commonly solved benchmarks (for queries solved by

both, STAGG𝘉𝘜 achieves a lower average solving time (𝟫𝟪.𝟪𝟣 seconds) com-

pared to STAGG𝘛𝘋 (𝟣𝟢𝟪.𝟪𝟥 seconds)), and it enumerates fewer candidates.

It has onebig disadvantage though, which is that it can only expandexpres-

sions by appending to the previous expression, rather than by expanding

nodes on the left-hand side of the AST. In particular, this means it cannot

solve benchmarks that require expressions with more balanced Abstract

Syntax Trees or benchmarks that contain parentheses.
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Table 5.1: Comparison of benchmark-solving performance across differ-

ent methods: The table reports the number of benchmarks solved (#), av-

erage solving time (time in seconds), and attempts across various bench-

marks. The benchmarks are categorised into real-world benchmarks (67

in total), real-world + artificial benchmarks (77 in total), benchmarks solved

by C2TACO, and benchmarks solved by Tenspiler. STAGG 𝘛𝘋 and STAGG 𝘉𝘜

demonstrate superior solving capabilities, solving more benchmarks over-

all compared to C2TACO and Tenspiler, with STAGG 𝘉𝘜 achieving the fastest

solving times for benchmarks solvable by C2TACO and Tenspiler. The res-

ults highlight the efficacy of STAGG over existing methods.

Real-World

(67)

Real-World + Artificial

(77)

Solved

by C2TACO

Solved

by Tenspiler

Methods # time # time attempts # time # time

STAGG𝘛𝘋 66 121.88 76 106.13 44.55 67 3.19 52 3.45

STAGG𝘉𝘜 63 113.86 73 98.81 35.62 66 2.11 50 2.03

LLM 24 2.61 34 2.59 1.62 31 2.57 20 2.72

C2TACO 59 22.57 67 21.15 18.45 67 21.15 50 23.69

C2TACO.NoHeuristics 59 43.08 67 49.41 48.81 67 49.41 50 43.76

Tenspiler 52 4.56 52 4.56
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Table 5.2: Impact of penalty rules on performance over 77 benchmarks

(real-world + artificial). The table compares the number of benchmarks

solved (#), the percentage of benchmarks solved (%), and the average solv-

ing time (time in seconds) for various configurations of STAGG. Removing

penalty rules (e.g., Drop(A), Drop(B)) reduces the number of solved bench-

marks and influences solving times. While STAGG 𝘛𝘋 and STAGG 𝘉𝘜 achieve

high solving rates with the full penalty rules, dropping specific penalties

often results in faster solving times but at the cost of reduced solving cap-

ability, as it failed solving complex benchmarks.

Real-World + Artificial (77)

Methods # % time

STAGG𝘛𝘋 76 98.70% 106.13

STAGG𝘛𝘋.Drop(A) 71 92.21% 7.21

STAGG𝘛𝘋.Drop(a1) 72 93.51% 79.24

STAGG𝘛𝘋.Drop(a2) 75 97.40% 91.66

STAGG𝘛𝘋.Drop(a3) 72 93.51% 21.01

STAGG𝘛𝘋.Drop(a4) 75 97.40% 90.58

STAGG𝘛𝘋.Drop(a5) 75 97.40% 83.34

STAGG𝘉𝘜 73 94.81% 98.81

STAGG𝘉𝘜.Drop(B) 70 90.91% 68.18

STAGG𝘉𝘜.Drop(b1) 71 92.21% 48.95

STAGG𝘉𝘜.Drop(b2) 70 90.91% 68.75
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Table 5.3: Performance comparison of different methods and grammar

configurations over 77 benchmarks (real-world + artificial). The table

shows the number of benchmarks solved (#), the percentage of bench-

marks solved (%), the average solving time (time in seconds), and the num-

ber of synthesis attempts. STAGG 𝘛𝘋 and STAGG 𝘉𝘜 outperform C2TACO

variants in solving more benchmarks. Variations of STAGG demonstrate

the impact of grammar refinement, where dropping penalty rules (Drop(A),

Drop(B)) or using alternative configurations (e.g., EqualProbability, LLM-

Grammar) affects the solving capability, time, and attempts.

Real-World + Artificial (77)

Methods # % time attempts

STAGG𝘛𝘋 76 98.70% 106.13 44.55

STAGG𝘛𝘋.Drop(A) 71 92.21% 7.21 13.65

STAGG𝘛𝘋.EqualProbability 73 94.81% 28.14 37.27

STAGG𝘛𝘋.LLMGrammar 52 67.53% 3.77 5.25

STAGG𝘛𝘋.FullGrammar 69 89.61% 91.15 874.29

STAGG𝘉𝘜 73 94.81% 98.81 35.62

STAGG𝘉𝘜.Drop(B) 70 90.91% 68.18 10.07

STAGG𝘉𝘜.EqualProbability 74 96.10% 180.31 62.78

STAGG𝘉𝘜.LLMGrammar 52 67.53% 2.74 2.60

STAGG𝘉𝘜.FullGrammar 68 88.31% 96.57 259.35

LLM 34 44.16% 2.59 1.62

C2TACO 67 87.01% 21.15 18.45

C2TACO.NoHeuristics 67 87.01% 49.41 48.81
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Figure 5.10: Impact of different grammar configurations in STAGG on suc-

cess rates across all 𝟩𝟩 benchmarks.

5.8.3 Contribution of the Penalty Functions.

Table 5.2 shows the decline in performance for both STAGG 𝘛𝘋 and STAGG
𝘉𝘜 approaches when individual penalty rules are removed. As each penalty

rule is dropped, the number of queries solved decreases, highlighting the

importance of these rules in achieving high query-solving efficiency.

5.8.4 Contribution of Grammar Refinement and Probab-

ilities.

Figure 5.10, 5.11 and Table 5.3 show the performance of difference con-

figurations of STAGG: EqualProbability uses the refined grammar but

replaces all probabilities in the generated pCFG with equal probabilities;

FullGrammar uses the full TACO grammar in Figure 5.4 with equal prob-

abilities; LLMGrammar uses the full TACO grammar in Figure 5.4 with prob-

abilities learned from the LLM responses. All these configurations use the

penalty functions. Thus, in order to compare the contribution of the gram-

mar refinement, we can compare the performance of LLMGrammar, which
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Figure 5.11: The performance of difference configurations of STAGG on all

𝟩𝟩 benchmarks.

uses learned probabilities but no refinement, to STAGG. Dropping the re-

finement here, results in us solving 𝟥𝟣% fewer benchmarks. If we com-

pare FullGrammar to EqualProbability, we can see that grammar re-

finement has less impact when learned probabilities are not used, but still

results in a significant number of benchmarks being dropped.

In order to compare the contribution of the probabilities, we can com-

pare the performance of EqualProbability to STAGG, where we note

that using equal probabilities on the refined grammar results in an in-

crease in the number of benchmarks solved for STAGG𝘛𝘋, and an increase

in solving speed for STAGG𝘉𝘜, although neither is as impactful as the gram-

mar refinement. In fact, the comparison between FullGrammar and LL-
MGrammar demonstrates that learned probabilities can have a negative

impact if they are used in a grammar that is not general enough. Thus,

our answer to RQ4 and RQ5 is that grammar refinement in combination

with probabilities has a bigger impact onperformance than either compon-
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ent part, but the refinement alone is more powerful than the probabilities

alone.

5.9 Conclusions

This chapter presented STAGG, a novel approach that combines LLMs and

program synthesis to lift legacy tensor code to DSLs. We use a set of

LLM responses to infer a probabilistic context-free grammar that drives an

enumerative search over the space of possible solutions. Our technique

successfully lifts 𝟫𝟫% of a large suite of benchmarks with an average lift-

ing time of 𝟥.𝟣𝟫 seconds, outperforming existing state-of-the-art lifters in

terms of coverage and synthesis time. Additionally, STAGG is able to auto-

matically learn a search space, and it does not rely on any pre-defined heur-

istics. Future work will focus on expanding our technique to application

domains other than tensor computation.



Chapter 6

Related Work

6.1 SyGuS Solvers

Many state-of-the-art SyGuS solvers are based on enumerative synthesis

[6, 95, 57, 42] anduse clever heuristics to improve the search speed. Closest

to our work in Chapter 4 and Chapter 5 is Euphony [57], which accelerates

enumerative syntax-guided synthesis by biasing the search towards likely

programs using a learned probabilistic model. Specifically, it employs an

𝘈∗ search algorithm that enumerates candidate programs in order of de-

creasing probability, effectively treating the negative log probability of a

program as the search cost. The search is guided by a probabilistic higher-

order grammar [17] trained on previously solved synthesis benchmarks,

so program derivations are ranked by their learned likelihood rather than

assumed uniform. This approach significantly prunes the search space

by prioritising derivations that mirror patterns from the training solutions,

leading to faster discovery of correct programs. However, Euphony’s ef-

fectiveness hinges on the availability of a library of known solutions to train

its model, and obtaining such domain-specific training data can be chal-

lenging. In contrast, newer methods avoid this requirement by guiding

113



114 Chapter 6. Related Work

the search with pre-trained large language models (LLMs), which provide

probabilistic grammar guidance without the need for custom training cor-

pora. Weighted grammars have also been used to guide programming

by example [73], and to encode syntactic objectives [40], for instance, for

optimising the length of solutions.

The SyGuS framework itself [3] formalises synthesis as the task of find-

ing a program from a user-specified grammar that satisfies a logical spe-

cification. Almost all synthesis algorithms use oracles to give feedback to

the synthesis process [47, 46]. The majority of these use semantic oracles,

which give feedback on the meaning of the program. For example, the

counterexample-guided inductive synthesis (CEGIS) paradigm [101]. CE-

GIS frames synthesis as an iterative loop between a learner and a verifier.

The learner proposes a candidate program consistent with the examples

seen so far, while the verifier checks the candidate against the full specific-

ation. If the candidate is incorrect, the verifier returns a counterexample

input that exposes the failure. This counterexample is then added to the

learner’s example set, refining the next candidate. The loop continues

until either a correct program is found or the search space is exhausted.

This iterative loop underpins many later solvers. A refinement of the ap-

proach, CEGIS(𝒯) [2], integrates deductive reasoning from theory solvers

directly into the loop, enabling the synthesiser to solve for constants or

prune infeasible candidateswithin background theories. Similarly, conflict-

driven learning techniques such as Feng et al.[31] strengthen the search

by learning constraints from failed partial programs, thereby eliminating

entire regions of the search space. EUSolver [6] pioneered a divide-and-

conquer approach, decomposing problems into smaller sub-expressions

and unifying them into complete solutions. Reynolds et al. [96] intro-

duce the first program synthesis engine, which takes a different path by
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embedding synthesis directly inside an SMT solver. Candidate functions

are represented as algebraic datatypes, and the solver explores them via

counterexample-guided quantifier instantiation (CEGQI), which systemat-

ically proposes instantiations for the unknown function and refines them

with counterexamples. This “synthesis in the solver” approach leverages

SMT machinery for pruning and theory reasoning, and has proven highly

competitive across SyGuS competition tracks. DryadSynth [42] exemplifies

a more recent trend of hybrid solvers that combine deductive reasoning

with concurrent enumerative search. It decomposes specifications into

subproblems and applies lightweight logical inference to rule out infeas-

ible branches before attempting enumeration. Multiple threads then ex-

plore different parts of the search space in parallel, exchanging deductions

to accelerate convergence. This cooperativemodel scales to domains such

as strings and bit-vectors where pure enumeration or deduction alone is

insufficient.

Machine learning techniques have been deployed to improve the effi-

ciency of enumerative synthesis. Parsert et al. [85] use reinforcement

learning with Monte Carlo tree search to guide grammar-based enumera-

tion. A policy network selects grammar rules, while a value network estim-

ates whether a partial program is likely to lead to a solution, and both are

trained using automatically generated SyGuS benchmarks. Chen et al.[26]

instead integrate reinforcement learning directly into a deductive synthes-

iser: partial programs are checked with an SMT solver, and infeasible can-

didates trigger counterexample-guided policy updates, so the policy im-

proves online during synthesis. Bunel et al., [22] address the program ali-

asing problem in neural synthesis by combining a grammar-constrained

decoder with policy-gradient training, rewarding themodel for any correct

program that satisfies the specification rather than only reproducing ref-
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erence solutions. Morton et al., [74] propose grammar filtering, where a

neural classifier predicts which production rules are relevant for the given

specification, allowing the solver to discard irrelevant rules and focus on a

much smaller, problem-specific grammar. Together, thesemethodsdemon-

strate how learned heuristics can be used either to prioritise expansions,

to learn from deductive counterexamples, or to prune the grammar it-

self before search begins. Balog et al. [10] synthesised array manipu-

lation programs from I/O examples using a feedforward neural network

(FNN) to build a probabilistic distribution over the target language. Dur-

ing the search, the synthesis algorithm expands partial programs based

on the probabilities predicted by the FNN for the given I/O specification.

Neural-guided synthesis has also been applied to solve string manipula-

tion tasks by [79, 99], inductive logic programming [99], dataframe [15]

and tensor [98, 76] processing, and code transpilation [71] using distinct

models. SketchAdapt [77] uses a model to produce a program sketch as a

starting point and completes said sketch through symbolic enumeration.

6.2 Large Language Models

LLMs, such as GPT-4 [81] and CoPilot [36], have demonstrated impress-

ive capabilities in generating code and assisting in diverse programming

tasks with natural language and input-output specifications [20, 21]. In [9],

it is shown that performance scales log-linearly with model size, improves

with fine-tuning, and can be further enhanced by interactive natural lan-

guage feedback, though models still struggle with semantic grounding

and execution understanding. Jigsaw [44] augments black-box LLMs like

GPT-3 and Codex with program analysis and synthesis modules, combin-

ing natural language intent and I/O examples to synthesise Pandas code.
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It corrects common LLM errors (e.g., variable references, argument mis-

matches, semantic mistakes) via AST-to-AST transformations and learns

from user feedback, leading to significantly higher accuracy than raw LLM

outputs. Nevertheless, their tendency to produce hallucinations, factu-

ally incorrect, or contextually inappropriate outputs poses challenges to

users [88, 97, 87].

SYMLLM [50] is a framework that recovers from LLM synthesis failures

by decomposing incorrect programs into prefix and suffix subprograms,

then recursively solving the resulting subproblems. CodeARC [108] intro-

duces an interactive benchmark where LLM agents query hidden target

functions with inputs, invoke a differential testing oracle, and iteratively

refine synthesised code. Closest to our work in Chapter 4 is Kamath et al.,

who use LLMs to synthesise loop invariants directly [48]. Our work also

demonstrates that LLMs are surprisingly good at synthesising invariants,

but additionally addresses how to use LLMs in other formal synthesis prob-

lems and when they cannot find the solution in one shot. LEMUR [111] in-

troduces a hybrid framework that combines the high-level reasoning abil-

ity of LLMs with the precise low-level reasoning of automated verifiers. In

this approach, LLMs propose candidate invariants and intermediate proof

goals, while automated reasoners validate or repair them within a sound

proof calculus. Clover [103] presents a complementary paradigmof closed-

loop verifiable code generation, in which LLMs generate code together

with natural-language documents and formal annotations. Jha et al. [45]

and Song et al. [102] integrate an LLM into a CEGIS loop, but unlike our

work, the entire synthesis phase is carried out by the LLM, which prevents

them from leveraging the combined strengths of enumerative solving and

LLMs. Wang et al. [106] propose grammar prompting, where an LLM uses

a BNF grammar to enforce syntactic constraints during generation, en-
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abling highly structured languages such as DSLs to be generated withmin-

imal data. Xander [91] is a neurosymbolic architecture for SQL generation

that explores multiple candidate queries using best-first search, applies

symbolic checks on partial and complete queries, and repairs them when

needed. Similarly, Tao et al. [105] address trust concerns in LLM-generated

code by restricting the search space to predefined “safe” BNF grammars,

avoiding programs with risky vulnerabilities. Another work close to our

work in Chapter 4 is HYSYNTH [13]. HYSYNTH first samples candidate pro-

grams from an LLM and extracts their production statistics to build a prob-

abilistic context-free grammar (pCFG). This pCFG is then used to weight

rules in a bottom-up enumerative synthesiser, effectively biasing search

toward components that the LLM deems relevant, thereby reducing the

search space and speeding up synthesis.

Pre-trained LLMs have also been used for code lifting, which will be

introduced in Chapter 5. LLMLift [16] applies LLMs directly for verified lift-

ing, leveraging GPT-4 [81] to guess candidate solutions and loop invari-

ants to prove equivalence, with feedback given to the LLM to correct mis-

takes. This approach is highly effective but depends on the LLM’s abil-

ity to repair itself from feedback, which is not always trivial in complex

domains [80]. Oxidizer [113] is a modular translation framework that ap-

plies feature mapping rules to guide LLMs through subtle cross-language

differences and performs type-compatibility checks before validating I/O

equivalence. AlphaTrans [43] addresses the complexity of migrating from

one language to another, which is infeasible with a naive “feed it to GPT-4”

approach due to context limits and error accumulation. Pan et al. [84] sys-

tematically evaluate general-purpose and code-focused LLMs acrossmany

language pairs, introducing a taxonomy of translation bugs and showing

that most errors arise from syntactic or semantic mismatches or from viol-
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ating target-language constraints. These findings suggest that while LLMs

hold promise for automated translation, reliable results require comple-

mentary techniques such as program analysis or prompt engineering.

Close to our work in Chapter 5 is C2TACO [70]. C2TACO is a synthesis

tool that generates TACO code from I/O examples. It implements a bottom-

up enumerative algorithm, and it uses code analysis to restrict the search

space of programs. mlirSynth [19] also has a similar approach, but it lifts

tensor programs across different MLIR dialects. In both methods, correct-

ness is asserted using only I/O testing, while our work in Chapter 5 per-

forms boundedmodel checking to verify that the lifted programs are equi-

valent to their original counterpart. A different synthesismethodwas used

in Tenspiler [93], which employs symbolic synthesis to generate programs

in six different tensor DSLs. Tenspiler builds verification conditions and

loop invariants to prove that the lifted program is equivalent to the original

one. Unlike our work, which learns how to explore the search space in a

fully automated way, all those techniques require hard-coded heuristics to

make the search space tractable.

Another approach to lift code is API matching, in which source code is

replaced by optimised library routines to improve performance. Examples

in the tensor domain include KernelFaRer [28], which focuses on general

matrix multiplication (GEMM), and ATC [72], which targets both GEMM and

convolutions. SpEQ [55] introduces a method of translating sparse linear

algebra codes to optimised targets using equality saturation applied to

LLVM IR. However, these approaches are often tailored to specific APIs

and are not portable. Our work in Chapter 5 leverages the great learn-

ing capabilities of Large LanguageModels to infer the search space, which

makes our technique extensible to different targets and to more unrestric-

ted back-ends such as DSLs.
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6.3 Automatic Prompt Generation

Manual prompting refers to human-designed prompt strategies. For ex-

ample, Chain-of-Thought prompting [109] or Knowledge prompting [67]

are clever prompting strategies designed by humans that often improve

the performance of LLMs across reasoning tasks. In Chapter 3, we dif-

fer from manual prompting in that we take these strategies as inputs and

learn to select the best combination of them for a given task.

Continuous and discrete prompting both refer to automated prompt-

ing techniques. Continuous prompting techniques, like Prefix-Tuning [59],

aim to learn domain and task-specific vectors that are then used to guide

LLMs to better performance. These vectors can usually not be represented

by a sequence of tokens, so continuous prompting is not often considered

interpretable.

In contrast, discrete prompting techniques optimise the text input to

the LLM. Somediscrete prompting techniques, like PRewrite [53], RLPrompt

[29], TEMPERA [114] and GRIPS [90], take a starting prompt and search

for a new version of the prompt that outperforms the original. To un-

derstand the starting prompt, these techniques usually use a second lan-

guage model in the loop. Other discrete prompting techniques, like Auto-

Prompt [100], Liu et al. [66] and Lu et al. [69], generate prompts using tem-

plates. AutoPrompt uses LLM gradients to learn task-specific keywords

that are then included in the prompt. Liu et al. select examples to include

in a few-shot prompt template. In a similar vein, Lu et al. optimise the

order of examples.

Ourwork in Chapter 3 ismost like the latter category of discrete prompts.

We rely on templates and existing prompts to offer inexpensive prompt op-

timisation.
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Another related work in Chapter 3 is “portfolio solver”, which refers to

any algorithm that deploys multiple solvers or solver configurations on a

given problem. Wintersteiger et al. [110] uses the concurrent portfolio

solver for a given SMT formula, run multiple Z3 instances configured with

different heuristics in parallel, sharing learned clauses so that the fastest

solver can terminate the search early. MedleySolver [89] predicts a se-

quence of SMT solvers for a given input query to deploy based on minim-

ising Par-2 score (a proxy for time with a penalty for timeouts). PAK-UCB

[41] frames prompt-awaremodel selection as a contextual bandit problem,

which learns prompt-dependent performance using kernel-based predict-

ors, with randomFourier features for efficiency. OPTS [7] chooses a prompt

design strategy via a bandit mechanism to improve downstream perform-

ance.





Chapter 7

Conclusions

Program synthesis sits at the intersection of programming languages and

artificial intelligence, aiming to automatically generate correct programs

from high-level specifications. This thesis has explored a hybrid approach

that bridges formal synthesis and Large LanguageModels (LLMs), seeking

to combine the scalability and adaptability of LLMs with the formal guar-

antees of program synthesis.

7.1 Summary of Contributions

This thesis makes four key contributions that advance the state-of-the-art

in program synthesis:

• CYANEA, the online solver selection:

We developed a contextual multi-armed bandit framework that dy-

namically selects between LLM–prompt pairs and symbolic solvers

based on features of the synthesis task. CYANEA consistently outper-

formed the best individual solver in terms of success rate and com-

putational efficiency.

123
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• LLM-guided probabilistic grammars: We proposed two comple-

mentary techniques, pCFG-synth and iLLM-synth, that mine probabil-

istic guidance from incorrect LLM outputs and integrate this informa-

tion into enumerative search. While pCFG-synth achieved the highest

overall success rate (solving 80.1% of SyGuS benchmarks), iLLM-synth

demonstrated the feasibility of interactive prompting and dynamic

grammar refinement during search.

• STAGG: guided tensor lifting: Weapplied thehybrid synthesis frame-

work to lift low-level tensor kernels into high-level DSLs. STAGG com-

bined LLM-driven heuristics with weighted A* search, achieving 99%

correctness on real-world tasks and up to a 12× speedup over previ-

ous state-of-the-art methods.

7.2 Implications and Impact

This thesis demonstrates that LLMs can be effectively integrated into pro-

gram synthesis pipelines as heuristic engines rather than standalone solv-

ers. By transforming incorrect or partial LLM outputs into actionable prob-

abilistic grammars, we achieved significant improvements in both scalabil-

ity and correctness compared to purely symbolic or purely statistical meth-

ods. The proposed frameworks are model-agnostic, ensuring compatibil-

ity with future LLM architectures without requiring retraining.

Furthermore, the success of STAGG in lifting tensor kernels highlights

the potential of this approach for real-world software engineering tasks,

including code transpilation, optimisation, and DSL migration.
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7.3 Limitations and Future Work

While the hybrid frameworks presented in this thesis demonstrate clear

benefits, several limitations remain:

• Benchmark diversity:

The evaluationprimarily relied on SyGuSbenchmarks anddense tensor

lifting tasks, which, while standard in the field, may not fully capture

the diversity of real-world synthesis challenges. Future work should

expand the evaluation to broader domains.

• LLM prompt engineering:

Although the frameworks leverage pre-trained LLMs, prompt engin-

eering in CYANEA is limited to selecting from a fixed, manually con-

structed set of prompt styles. While this selection improves robust-

ness over single-prompt baselines, it still relies on hard-coded tem-

plates. Future work could explore automatic construction and con-

tinual refinement of the prompt library.

• Model bias and hallucination:

While the frameworks exploit the strengths of LLMs, they also inherit

model biases and the tendency to hallucinate or produce semantic-

ally invalid code. Developing more reliable correction mechanisms

remains an open challenge.

7.4 Applicability to Other Domains

By combining LLM-derived heuristics with enumerative search techniques,

this thesis demonstrates that it is possible to build synthesis systems that
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are both efficient and reliable. This hybrid approach opens the door to scal-

able, formally correct program synthesis that leverages the best of both

statistical and symbolic reasoning. As large language models continue to

evolve, integrating them effectively into symbolic frameworks holds prom-

ise for the next generation of intelligent software development tools.

In this thesis, we have demonstrated its effectiveness in diverse syn-

thesis settings, from SyGuS benchmarks to tensor algebra lifting, show-

ing that a learned heuristic from LLMs can reliably guide enumerative or

repair-based search. This principle applies equally well to domains that

expose a well-defined domain-specific language (DSL) and verifiable se-

mantics. For example, in structuredquery languages such as SQLor formula-

driven environments like Excel, the space of target programs can be con-

cisely described by a grammar or template. Given such a DSL, an LLM

can propose plausible candidate functions that capture the user intent,

and when these initial guesses fail, an enumerative or constraint-guided

search can repair or complete them toward correctness. Hence, we be-

lieve, by providing a compact DSL and a mechanism for automatic veri-

fication, the hybrid framework can be adapted to many real-world applic-

ations where correctness and interpretability are essential, ranging from

data transformation and spreadsheet automation to robotic task planning

and scientific computation.
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